首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   37084篇
  免费   6781篇
  国内免费   10058篇
化学   27694篇
晶体学   1177篇
力学   2393篇
综合类   910篇
数学   4972篇
物理学   16777篇
  2024年   121篇
  2023年   522篇
  2022年   1373篇
  2021年   1359篇
  2020年   1377篇
  2019年   1329篇
  2018年   1288篇
  2017年   1520篇
  2016年   1453篇
  2015年   1868篇
  2014年   2270篇
  2013年   2959篇
  2012年   3082篇
  2011年   3374篇
  2010年   2971篇
  2009年   2913篇
  2008年   3165篇
  2007年   3008篇
  2006年   2810篇
  2005年   2475篇
  2004年   1896篇
  2003年   1389篇
  2002年   1405篇
  2001年   1327篇
  2000年   1372篇
  1999年   842篇
  1998年   539篇
  1997年   470篇
  1996年   451篇
  1995年   376篇
  1994年   445篇
  1993年   346篇
  1992年   325篇
  1991年   211篇
  1990年   203篇
  1989年   218篇
  1988年   127篇
  1987年   110篇
  1986年   103篇
  1985年   74篇
  1984年   81篇
  1983年   50篇
  1982年   55篇
  1981年   46篇
  1980年   39篇
  1979年   37篇
  1978年   18篇
  1976年   16篇
  1974年   18篇
  1965年   12篇
排序方式: 共有10000条查询结果,搜索用时 13 毫秒
971.
电子真空回旋器件是一种对磁场精度要求较高的微波源装置,一般采用超导磁体提供磁场环境.超导磁体的应用中,磁场分布的实现是超导磁体设计的核心问题.提供回旋器件磁场的高温超导磁体包含较复杂的磁体绕组,为了解决此类设计计算问题,本文提出了一种包含设计区域约束的线性优化方法进行回旋器件高温超导绕组的设计优化,通过分步的约束和线性优化计算,可得到同时满足设计要求和绕组可实现的设计磁场电流分布设计.计算实例的结果给出了一个提供磁场强度1.3 Tesla,长度285 mm的均匀磁场区域,同时满足多位置的磁场要求,设计结果与要求一致度较好,精度满足应用需求.该计算方法是一种可适用于较复杂磁场要求和超导绕组结构的设计优化方法.  相似文献   
972.
Background: Targeting the CD47/SIRPα signaling pathway represents a novel approach to enhance anti-tumor immunity. However, the crystal structure of the CD47/SIRPα has not been fully studied. This study aims to analyze the structure interface of the complex of CD47 and IMM01, a novel recombinant SIRPα-Fc fusion protein. Methods: IMM01-Fab/CD47 complex was crystalized, and diffraction images were collected. The complex structure was determined by molecular replacement using the program PHASER with the CD47-SIRPαv2 structure (PDB code 2JJT) as a search model. The model was manually built using the COOT program and refined using TLS parameters in REFMAC from the CCP4 program suite. Results: Crystallization and structure determination analysis of the interface of IMM01/CD47 structure demonstrated CD47 surface buried by IMM01. Comparison with the literature structure (PDB ID 2JJT) showed that the interactions of IMM01/CD47 structure are the same. All the hydrogen bonds that appear in the literature structure are also present in the IMM01/CD47 structure. These common hydrogen bonds are stable under different crystal packing styles, suggesting that these hydrogen bonds are important for protein binding. In the structure of human CD47 in complex with human SIRPα, except SER66, the amino acids that form hydrogen bonds are all conserved. Furthermore, comparing with the structure of PDB ID 2JJT, the salt bridge interaction from IMM01/CD47 structure are very similar, except the salt bridge bond between LYS53 in IMM01 and GLU106 in CD47, which only occurs between the B and D chains. However, as the side chain conformation of LYS53 in chain A is slightly different, the salt bridge bond is absent between the A and C chains. At this site between chain A and chain C, there are a salt bridge bond between LYS53 (A) and GLU104 (C) and a salt bridge bond between HIS56 (A) and GLU106 (C) instead. According to the sequence alignment results of SIRPα, SIRPβ and SIRPγ in the literature of PDB ID 2JJT, except ASP100, the amino acids that form common salt bridge bonds are all conserved. Conclusion: Our data demonstrated crystal structure of the IMM01/CD47 complex and provides a structural basis for the structural binding interface and future clinical applications.  相似文献   
973.
974.
975.
976.
In the current study, the phytochemical constituents of volatile organic compounds (VOCs) obtained from Sida rhombifolia L. were identified by GC-FID and GC-MS analysis. A total of 73 volatile organic compounds were identified. The major components of S. rhombifolia VOCs were identified as palmitic acid (21.56%), phytol (7.02%), 6,10,14-trimethyl-2-pentadecanone (6.30%), oleic acid (5.48%), 2-pentyl-furan (5.23%), and linoleic acid (3.21%). The VOCs are rich in fatty acids (32.50%), olefine aldehyde (9.59%), ketone (9.41%), enol (9.02%), aldehyde (8.63%), and ketene (6.41%). The antioxidant capacity of S. rhombifolia VOCs was determined by 2,2-diphenyl-1-picryl-hydrazyl-hydrate (DPPH), 2,2-azinobis-(3-ethylbenzothiazolin-6-sulfonic acid) diammonium salt (ABTS), and ferric reducing/antioxidant power (FRAP) methods with butylated hydroxytoluene (BHT) and Trolox as standard. The VOCs showed dose-dependent antioxidant activity with IC50 (50% inhibitory concentration) values of 5.48 ± 0.024 and 1.47 ± 0.012 mg/mL for DPPH and ABTS assays, respectively. FRAP antioxidant capacity was 83.10 ± 1.66 mM/g. The results show that the VOCs distilled from S. rhombifolia have a moderate antioxidant property that can be utilized as a natural botanical supplement or an antioxidant.  相似文献   
977.
Fe(Ш)-doped graphitic carbon nitride (Fe(Ш)-CN) photocatalysts with various Fe(Ш) ions content were prepared via ultrasonic method. Detailed physical characterization indicated that Fe(Ш) ions had been successfully doped into the frame of g-C3N4. The photocatalytic activities were investigated, and methyl orange (MO) and tetracycline hydrochloride (TC) were used as the targeted pollutants. The as-prepared Fe(Ш)-CN materials exhibited higher photocatalytic activities than those of the pure g-C3N4. Specifically, the degradation rate of 2Fe(Ш)-CN under visible light was 2.06 times higher for MO and 2.65 times higher for TC than that of g-C3N4. The increased photocatalytic activities of Fe(Ш)-CN were mainly attributed to the enhanced light absorption ability and the rapid separation of photogenerated carriers. Moreover, the importance of active species during the reaction process was also explored, and the results indicated that •O2 is the main active species.  相似文献   
978.
Matrine derivatives were reported to have various biological activities, especially the ester, amide or sulfonamide derivatives of matrine deriving from the hydroxyl or carboxyl group at the end of the branch chain after the D ring of matrine is opened. In this work, to investigate whether moving away all functional groups from the C-11 branch chain could have an impact on the bioactivities, such as anti-tobacco mosaic virus (TMV), insecticidal and fungicidal activities, a variety of N-substituted-11-butyl matrine derivatives were synthesized. The obtained bioassay result showed that most N-substituted-11-butyl matrine derivatives had obviously enhanced anti-TMV activity compared with matrine, especially many compounds had good inhibitory activity close to that of commercialized virucide Ningnanmycin (inhibition rate 55.4, 57.8 ± 1.4, 55.3 ± 0.5 and 60.3 ± 1.2% at 500 μg/mL; 26.1, 29.7 ± 0.2, 24.2 ± 1.0 and 27.0 ± 0.3% at 100 μg/mL, for the in vitro activity, in vivo inactivation, curative and protection activities, respectively). Notably, N-benzoyl (7), N-benzyl (16), and N-cyclohexylmethyl-11-butyl (19) matrine derivatives had higher anti-TMV activity than Ningnanmycin at both 500 and 100 μg/mL for the four test modes, showing high potential as anti-TMV agent. Furthermore, some compounds also showed good fungicidal activity or insecticidal activity.  相似文献   
979.
Salicylic acid (SA) is a natural inducer of disease resistance in fruit, but its application in the food industry is limited due to low water solubility. Here, SA was encapsulated in β-cyclodextrin (β-CD) via the host–guest inclusion complexation method, and the efficacy of SA microcapsules (SAM) against blue mold caused by Penicillium expansum in postharvest apple fruit was elucidated. It was observed that SAM was the most effective in inhibiting the mycelial growth of P. expansum in vitro. SAM was also superior to SA for control of blue mold under in vivo conditions. Enzyme activity analysis revealed that both SA and SAM enhanced the activities of superoxide dismutase (SOD) and phenylalanine ammonia lyase (PAL) in apple fruit, whereas SAM led to higher SOD activities than SA. Total phenolic contents in the SAM group were higher than those in the SA group at the early stage of storage. SAM also improved fruit quality by retarding firmness loss and maintaining higher total soluble solids (TSS) contents. These findings indicate that microcapsules can serve as a promising formulation to load SA for increasing P. expansum inhibition activity and improving quality attributes in apple fruit.  相似文献   
980.
The poor water solubility, large particle size, and low accessibility of cellulose, the most abundant bioresource, have restricted its generalization to carbon dots (CDs). Herein, nitrogen and sulfur co-doped fluorescent carbon dots (N, S-CDs) were hydrothermally synthesized using cellulose nanocrystals (CNC) as a carbon precursor, exhibiting a small particle size and excellent aqueous dispersion. Thiourea was selected as a nitrogen and sulfur dopant to introduce abundant fluorescent functional groups into N, S-CDs. The resulting N, S-CDs exhibited nanoscale size (6.2 nm), abundant functional groups, bright blue fluorescence, high quantum yield (QY = 27.4%), and high overall yield (16.2%). The excellent optical properties of N, S-CDs endowed it to potentially display a highly sensitive fluorescence “turn off” response to rutin. The fluorescence response for rutin allowed a wide linear range of 0–40 mg·L−1, with a limit of detection (LOD) of 0.02 μM, which revealed the potential of N, S-CDs as a rapid and simple sensing platform for rutin detection. In addition, the sustainable and large-scale production of the N, S-CDs in this study paves the way for the successful high-value utilization of cellulose.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号