首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   63711篇
  免费   1736篇
  国内免费   814篇
化学   30737篇
晶体学   1067篇
力学   3399篇
综合类   78篇
数学   5076篇
物理学   25904篇
  2022年   696篇
  2021年   658篇
  2020年   616篇
  2019年   600篇
  2018年   748篇
  2017年   632篇
  2016年   1130篇
  2015年   884篇
  2014年   1235篇
  2013年   2822篇
  2012年   2785篇
  2011年   3528篇
  2010年   2429篇
  2009年   2486篇
  2008年   3071篇
  2007年   2860篇
  2006年   2698篇
  2005年   2372篇
  2004年   2151篇
  2003年   1867篇
  2002年   1789篇
  2001年   3102篇
  2000年   2253篇
  1999年   1658篇
  1998年   1170篇
  1997年   1157篇
  1996年   966篇
  1995年   860篇
  1994年   764篇
  1993年   695篇
  1992年   989篇
  1991年   1006篇
  1990年   891篇
  1989年   780篇
  1988年   746篇
  1987年   809篇
  1986年   672篇
  1985年   897篇
  1984年   839篇
  1983年   579篇
  1982年   569篇
  1981年   535篇
  1980年   496篇
  1979年   621篇
  1978年   650篇
  1977年   660篇
  1976年   576篇
  1975年   481篇
  1974年   521篇
  1973年   450篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
951.
The recrystallization of the structure of an X-ray amorphous AlN–TiB2–TiSi2 coating containing short-range order regions with characteristic sizes of 0.8–1.0 nm has been performed using a negative gold ion (Au) beam and high-temperature annealing. Direct measurements using methods of high-resolution transmission electron microscopy (HRTEM) and energy-dispersive X-ray spectral (EDXS) microanalysis have demonstrated that thermal annealing at a temperature of 1300°C in air results in the formation of nanoscale (10–15 nm) phases AlN, AlB2, Al3O3, and TiO2, whereas the ion implantation of negative ions Au leads to a fragmentation (decrease in the size) of nanograins to 2–5 nm with the formation of spheroidal gold nanocrystallites a few nanometers in size, as well as to the formation of an amorphous oxide film in the depth (near-surface layer) of the coating due to ballistic ion mixing and collision cascades.  相似文献   
952.
A technique for measuring the spatial distribution of X-rays generated by a pyroelectric source is developed and tested. Anisotropy in the spatial distribution of X-rays from the surface perpendicular to the pyroelectric axis of the lithium niobate crystal depending on the piezoelectric crystal axis orientation was detected. The result obtained shows the necessity of considering the effect of piezoelectric properties of pyroelectric crystals on X-ray generation processes.  相似文献   
953.
J. Li  J. Y. Zhang  P. Zhang  K. Wu  J. Sun 《哲学杂志》2016,96(29):3016-3040
Creep tests were performed on the high stacking fault energy (SFE) nanotwinned (NT) Ni free-standing foils with nearly the same twin thickness at room temperature (RT) to investigate the effects of grain size and loading rate on their microstructural stability and creep behaviour. The grain growth mediated by the twinning/detwinning mechanism at low applied stresses (<800 MPa) and grain refinement via the detwinning mechanism at high applied stresses (>800 MPa) were uncovered in the present NT-Ni foils during RT creep, both of which are attributed to the interactions between dislocations and boundaries. It appears that a higher initial dislocation density leads to a faster primary creep strain rate and a slower steady-state creep strain rate. Unlike the non-twinned metals in which grain growth often enhances the creep strain rate, the twinning/detwinning-mediated grain growth process unexpectedly lowers the steady-state creep strain rate, whereas the detwinning-mediated grain refinement process accelerates the creep strain rate in the studied NT-Ni foils. A modified phase-mixture model combined with Arrhenius laws is put forward to predict the scaling behaviour between the creep strain rate and the applied stress, which also predicts the transition from grain growth-reduced to grain refinement-enhanced steady-state creep strain rate at a critical applied stress. Our findings not only provide deeper insights into the grain size effect on the mechanical behaviour of nanostructured metals with high SFE, but also benefit the microstructure sensitive design of NT metallic materials.  相似文献   
954.
955.
A two-way satellite time and frequency transfer(TWSTFT) device equipped in the BeiDou navigation satellite system(BDS)can calculate clock error between satellite and ground master clock. TWSTFT is a real-time method with high accuracy because most system errors such as orbital error, station position error, and tropospheric and ionospheric delay error can be eliminated by calculating the two-way pseudorange difference. Another method, the multi-satellite precision orbit determination(MPOD)method, can be applied to estimate satellite clock errors. By comparison with MPOD clock estimations, this paper discusses the applications of the BDS TWSTFT clock observations in satellite clock measurement, satellite clock prediction, navigation system time monitor, and satellite clock performance assessment in orbit. The results show that with TWSTFT clock observations, the accuracy of satellite clock prediction is higher than MPOD. Five continuous weeks of comparisons with three international GNSS Service(IGS) analysis centers(ACs) show that the reference time difference between BeiDou time(BDT) and golbal positoning system(GPS) time(GPST) realized IGS ACs is in the tens of nanoseconds. Applying the TWSTFT clock error observations may obtain more accurate satellite clock performance evaluation in the 104 s interval because the accuracy of the MPOD clock estimation is not sufficiently high. By comparing the BDS and GPS satellite clock performance, we found that the BDS clock stability at the 103 s interval is approximately 10.12, which is similar to the GPS IIR.  相似文献   
956.
Rho-associated protein kinase (ROCK) has been recognized as an attractive therapeutic target to promote neurogenesis, neuroregeneration, and neurorecovery after cerebral injury. Here, a high-throughput screening protocol was described to discover novel ROCK inhibitors from a large chemical library containing \(\sim \)6.1 million structurally diverse, lead-like compounds. The protocol employed empirical rules such as ADMET evaluation and chemical similarity analysis to exclude those of drug-unlike candidates, and then molecular docking and binding affinity predictions were performed to suggest few promising candidates with high scores. Consequently, five compounds were successfully identified to have satisfactory activity profile with \(\hbox {IC}_{50}\) values at nanomolar level. In order to elucidate the molecular mechanism of inhibitor binding to target, the complex structures of ROCK kinase domain with the five identified compounds were modeled and examined in detail. A number of polar chemical forces such as hydrogen bonds and cation-\(\pi \) interactions as well as nonpolar contacts such as \(\pi \)\(\pi \) stacking and hydrophobic forces were revealed at the complex interface, conferring high affinity and strong specificity to inhibitor binding. In addition, several key residues around the kinase active site, including Val90, Lys105, Asn203, and Phe368, were found to play an important role in binding.  相似文献   
957.
The strength distributions of the giant monopole resonance (GMR) have been measured in the even-A Sn isotopes (A=112-124) with inelastic scattering of 400-MeV alpha particles in the angular range 0 degrees -8.5 degrees . We find that the experimentally observed GMR energies of the Sn isotopes are lower than the values predicted by theoretical calculations that reproduce the GMR energies in 208Pb and 90Zr very well. From the GMR data, a value of Ktau = -550 +/- 100 MeV is obtained for the asymmetry term in the nuclear incompressibility.  相似文献   
958.
The spin-wave excitations of the geometrically frustrated triangular lattice antiferromagnet CuFeO2 have been measured using high resolution inelastic neutron scattering. Antiferromagnetic interactions up to third nearest neighbors in the ab plane (J1, J2, J3, with J{2}/J{1} approximately 0.44 and J{3}/J{1} approximately 0.57), as well as out-of-plane coupling (J{z}, with J{z}/J{1} approximately 0.29) are required to describe the spin-wave dispersion relations, indicating a three-dimensional character of the magnetic interactions. Two energy dips in the spin-wave dispersion occur at the incommensurate wave vectors associated with multiferroic phase and can be interpreted as dynamic precursors to the magnetoelectric behavior in this system.  相似文献   
959.
We report the existence of broad and weakly asymmetric features in the high-energy (G) Raman modes of freely suspended metallic carbon nanotubes of defined chiral index. A significant variation in peak width (from 12 cm(-1) to 110 cm(-1)) is observed as a function of the nanotube's chiral structure. When the nanotubes are electrostatically gated, the peak widths decrease. The broadness of the Raman features is understood as the consequence of coupling of the phonon to electron-hole pairs, the strength of which varies with the nanotube chiral index and the position of the Fermi energy.  相似文献   
960.
We report the development of corrugated "slow-wave" plasma guiding structures with application to quasiphase-matched direct laser acceleration of charged particles and generation of a wide spectrum of electromagnetic radiation. These structures support guided propagation at intensities up to 2 x 10(17) W/cm(2), limited by our current laser energy and side leakage. Hydrogen and argon plasma waveguides up to 1.5 cm in length with corrugation period as short as 35 microm are generated in a cryogenic cluster jet. Experimental data are consistent with simulations showing periodic modulations of the laser pulse intensity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号