首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   29518篇
  免费   3830篇
  国内免费   3217篇
化学   21339篇
晶体学   365篇
力学   1483篇
综合类   239篇
数学   3670篇
物理学   9469篇
  2024年   79篇
  2023年   461篇
  2022年   809篇
  2021年   854篇
  2020年   940篇
  2019年   954篇
  2018年   818篇
  2017年   788篇
  2016年   1168篇
  2015年   1190篇
  2014年   1419篇
  2013年   1982篇
  2012年   2338篇
  2011年   2543篇
  2010年   1795篇
  2009年   1758篇
  2008年   1963篇
  2007年   1789篇
  2006年   1616篇
  2005年   1428篇
  2004年   1126篇
  2003年   917篇
  2002年   894篇
  2001年   752篇
  2000年   632篇
  1999年   592篇
  1998年   520篇
  1997年   461篇
  1996年   492篇
  1995年   399篇
  1994年   383篇
  1993年   346篇
  1992年   333篇
  1991年   279篇
  1990年   235篇
  1989年   194篇
  1988年   168篇
  1987年   131篇
  1986年   142篇
  1985年   155篇
  1984年   102篇
  1983年   64篇
  1982年   71篇
  1981年   53篇
  1980年   52篇
  1979年   58篇
  1978年   40篇
  1976年   37篇
  1974年   40篇
  1973年   45篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
991.
By employing planar thieno[3,2‐b]thiophene (TT) as end‐capped units and famous 3,4‐ethylenedioxythiophene (EDOT) or its all‐sulfur analog 3,4‐ethylenedithiathiophene (EDTT) as cores, two conjugated oligomer, TT‐EDOT‐TT and TT‐EDTT‐TT, have been synthesized and electropolymerized into electrochromic polymer films, P(TT‐EDOT‐TT) and P(TT‐EDTT‐TT), respectively. Due to strongly noncovalent inter/intramolecular interactions from S? S attraction of TT‐EDTT‐TT, it has twisted molecular configuration in contrast to planar TT‐EDOT‐TT. Spectroscopic, electrochemical, morphological as well as theoretical calculation studies of these oligomers or polymers were carried out to reveal the significant influence of such molecular geometry on their physicochemical and optoelectronic properties. According to electrochromic kinetics, P(TT‐EDTT‐TT) presented preferable electrochromic behavior such as the higher optical contrast (70.8%), favorable coloration efficiency (331.3 cm2 C?1) and fast response time (0.72 s). This research will help us deeply understand the effect of spatial organization of precursor molecules on the properties of electrochromic polymers and provides a promising strategy to develop high‐performance electrochromic materials. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019 , 57, 1041–1048  相似文献   
992.
A novel metal-doped metal–organic framework (MOF) was developed by incorporating salen–Mg into NH2–MIL-101(Cr) structure under ambient conditions. The Schiff base complex was successfully prepared by condensing salicylaldehyde with a free amino group and then coordinating metal ions. Such a structure can endow the sample with higher CO2 adsorption performance. At 0°C and 1 bar, the salen–Mg-modified sample achieves the maximum adsorption capacity of 2.18 mmol g−1 for CO2, which was 5.8% higher than the pristine salen–MOF under the same conditions. Notably, the Freundlich model indicates that the CO2 adsorption process of all samples conforms to reversible adsorption. However, the correlation coefficients (R2) of the Mg-doped sample are lower than that of the pristine sample. Besides, the CO2/N2 adsorption selectivity and isosteric heat also show a similar trend. These results indicate that the salen–Mg can enhance the interaction between the material and CO2 molecules.  相似文献   
993.
A series of Ce-Fe-Ox catalysts prepared by the different calcination temperatures (marked as CF-X, where X represented calcination temperature) were used to the selectivity catalytic reduction of NOx by NH3. The results explained the relationship between calcination temperature and the sulfate species over Ce-Fe-Ox, and then investigated the surface acidity and catalytic performance. The large amounts of sulfate species were formed over CF-450 and CF-550 while it was decomposed with further the increasing of calcination temperature, which resulted in the loss of surface acidity, causing a decrease in the catalytic activity over Ce-Fe-Ox. Thereby, the CF-450 catalyst showed the best catalytic activity and over 90% NOx conversion was obtained at 244–450 °C. Besides, the favored pore structure, more Fe3+ active species, higher Ce3+ concentration and the abundance of chemical adsorbed oxygen species, as well as the surface acid sites, would together contribute to the excellent catalytic activity of CF-450 catalyst.  相似文献   
994.
995.
Superoscillation is an intriguing wave phenomenon which enables subwavelength features propagating into far field and hence has potential applications in super‐resolution microscopy as well as particle trapping and manipulation. While previous demonstrations mostly concentrate on designing complicated nanostructures for generating uncontrollable superoscillatory functions, here a new technique which allows for creating polynomially shaped superoscillatory functions that contain phase singularity arrays is demonstrated both theoretically and experimentally. Such a technique is implemented in optical experiments for the first time and controllable superoscillatory lobes with feature much below the diffraction limit is achieved. More importantly, a general theoretical framework, which, to our knowledge, has not been reported before, is developed to show how the created superoscillations propagate to a distance of many Rayleigh ranges and eventually disappear when the distance is sufficiently larger. The validity of the model is confirmed by the experiments. The results may trigger further studies in light field shaping and manipulations in subwavelength scale.  相似文献   
996.
Organic–inorganic hybrid perovskite-type multiferroics have attracted considerable research interest owing to their fundamental scientific significance and promising technological applications in sensors and multiple-state memories. The recent achievements with divalent metal dicyanamide compounds revealed such malleable frameworks as a unique platform for developing novel functional materials. Herein, two 3D organic–inorganic hybrid perovskites [Et3P(CH2)2F][Mn(dca)3] ( 1 ) and [Et3P(CH2)2Cl][Mn(dca)3] ( 2 ) (dca=dicyanamide, N(CN)2) are presented. Accompanying the sequential phase transitions, they display a broad range of intriguing physical properties, including above room temperature ferroelastic behavior, switchable dielectricity, and low-temperature antiferromagnetic ordering (Tc=2.4 K for both 1 and 2 ). It is also worth noting that the spontaneous strain value of 1 is far beyond that of 2 in the first ferroelastic phase, as a result of the precise halogen substitution. From the point view of molecular design, this work should inspire further exploration of multifunctional molecular materials with desirable properties.  相似文献   
997.
Four flexible ligands with different lengths, degrees of flexibility, and steric bulk were synthesized and used to prepare metal-directed assemblies. Interestingly, minor differences among the ligands led to products with dramatically different topologies: a binuclear D -shaped macrocycle, tetranuclear rectangles, and hexanuclear trefoil knots. The interconversion of the trefoil-shaped complexes was also investigated. This contribution introduces a rare ligand-controlled trefoil–rectangle shape transformation in solution.  相似文献   
998.
999.
Bimetallic AgPd nanoparticles have been synthesized before, but the interfacial electronic effects of AgPd on the photocatalytic performance have been investigated less. In this work, the results of hydrogen evolution suggest that the bimetallic AgPd/g-C3N4 sample has superior activity to Ag/g-C3N4 and Pd/g-C3N4 photocatalysts. The UV/Vis diffuse reflectance spectroscopy, X-ray photoelectron spectroscopy, CO adsorption diffuse reflectance FTIR spectroscopy, and FTIR results demonstrate that in the AgPd/g-C3N4, the surface electronic structures of Pd and Ag are changed, which is beneficial for faster photogenerated electron transfer and greater H2O molecule adsorption. In situ ESR spectra suggest that, under visible light irradiation, there is more H2O dissociation to radical species on the AgPd/g-C3N4 photocatalyst. Furthermore, DFT calculations confirm the interfacial electronic effects of AgPd/g-C3N4, that is, Pdδ−⋅⋅⋅Agδ+, and the activation energy of H2O molecule dissociation on AgPd/g-C3N4 is the lowest, which is the main contributor to the enhanced photocatalytic H2 evolution.  相似文献   
1000.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号