Fluorescence correlation spectroscopy (FCS) has been widely used to investigate molecular diffusion behavior in various samples. The use of the maximum entropy method (MEM) for FCS data analysis provides a unique means to determine multiple distinct diffusion coefficients without a priori assumption of their number. Comparison of the MEM-based FCS method (MEM-FCS) with another method will reveal its utility and advantage as an analytical tool to investigate diffusion dynamics. Herein, we measured diffusion of fluorescent probes doped into nanostructured thin films using MEM-FCS, and validated the results with single molecule tracking (SMT) data. The efficacy of the MEM code employed was first demonstrated by analyzing simulated FCS data for systems incorporating one and two diffusion modes with broadly distributed diffusion coefficients. The MEM analysis accurately afforded the number of distinct diffusion modes and their mean diffusion coefficients. These results contrasted with those obtained by fitting the simulated data to conventional two-component and anomalous diffusion models, which yielded inaccurate estimates of the diffusion coefficients. Subsequently, the MEM analysis was applied to FCS data acquired from hydrophilic dye molecules incorporated into microphase-separated polystyrene-block-poly(ethylene oxide) (PS-b-PEO) thin films characterized under a water-saturated N2 atmosphere. The MEM analysis revealed distinct fast and slow diffusion components attributable to molecules diffusing on the film surface and inside the film, respectively. SMT studies of the same materials yielded trajectories for mobile molecules that appear to follow the curved PEO microdomains. Diffusion coefficients obtained from the SMT data were consistent with those obtained for the slow diffusion component detected by MEM-FCS. These results highlight the utility of MEM-FCS and SMT for gaining complementary information on molecular diffusion processes in heterogeneous material systems.
Journal of Applied Spectroscopy - Based on partial least squares (PLS) analysis, the effects of different smoothing points and different preprocessing methods on the accuracy and precision of the... 相似文献
High-order cumulants and factorial cumulants of conserved charges are suggested for the study of the critical dynamics in heavy-ion collision experiments. In this paper, using the parametric representation of the three-dimensional Ising model which is believed to belong to the same universality class as quantum chromo-dynamics, the temperature dependence of the second- to fourth-order (factorial) cumulants of the order parameter is studied. It is found that the values of the normalized cumulants are independent of the external magnetic field at the critical temperature, which results in a fixed point in the temperature dependence of the normalized cumulants. In finite-size systems simulated using the Monte Carlo method, this fixed point behavior still exists at temperatures near the critical. This fixed point behavior has also appeared in the temperature dependence of normalized factorial cumulants from at least the fourth order. With a mapping from the Ising model to QCD, the fixed point behavior is also found in the energy dependence of the normalized cumulants (or fourth-order factorial cumulants) along different freeze-out curves. 相似文献
The omni-directional reflection characteristics of one-dimensional photonic crystals composed of Ta 2 O 5 /MgF 2 multi-quantum well (MQW) are studied using the transfer matrix method. An omni-directional reflector consisting of three and four Ta 2 O 5 /MgF 2 MQWs is investigated. Results show that the photonic band gap of the photonic crystal composed of three and four Ta 2 O 5 /MgF 2 MQWs, which are within the wavelength ranges of 402–712 and 412–1,023 nm, respectively, could cover the entire visible region. The relationship among the width of the band gap, its location, reflectivity rate, and incident angle of the incident light is analyzed. The optimal structural parameters of the MQW of the omni-directional reflector in the visible region are also calculated. The calculations provide a guide for the design of omni-directional reflection devices in the visible region. 相似文献