首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   51791篇
  免费   8267篇
  国内免费   6029篇
化学   35549篇
晶体学   680篇
力学   3255篇
综合类   424篇
数学   6360篇
物理学   19819篇
  2024年   184篇
  2023年   944篇
  2022年   1662篇
  2021年   1782篇
  2020年   1919篇
  2019年   1859篇
  2018年   1675篇
  2017年   1578篇
  2016年   2335篇
  2015年   2359篇
  2014年   2895篇
  2013年   3687篇
  2012年   4355篇
  2011年   4633篇
  2010年   3240篇
  2009年   3189篇
  2008年   3490篇
  2007年   3141篇
  2006年   2939篇
  2005年   2275篇
  2004年   1798篇
  2003年   1497篇
  2002年   1496篇
  2001年   1209篇
  2000年   1208篇
  1999年   1098篇
  1998年   944篇
  1997年   865篇
  1996年   910篇
  1995年   787篇
  1994年   649篇
  1993年   534篇
  1992年   510篇
  1991年   419篇
  1990年   373篇
  1989年   311篇
  1988年   244篇
  1987年   207篇
  1986年   191篇
  1985年   184篇
  1984年   127篇
  1983年   105篇
  1982年   77篇
  1981年   57篇
  1980年   26篇
  1979年   19篇
  1978年   9篇
  1977年   11篇
  1974年   9篇
  1964年   8篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
81.
Precision medicine has been strongly promoted in recent years. It is used in clinical management for classifying diseases at the molecular level and for selecting the most appropriate drugs or treatments to maximize efficacy and minimize adverse effects. In precision medicine, an in-depth molecular understanding of diseases is of great importance. Therefore, in the last few years, much attention has been given to translating data generated at the molecular level into clinically relevant information. However, current developments in this field lack orderly implementation. For example, high-quality chemical research is not well integrated into clinical practice, especially in the early phase, leading to a lack of understanding in the clinic of the chemistry underlying diseases. In recent years, mass spectrometry (MS) has enabled significant innovations and advances in chemical research. As reported, this technique has shown promise in chemical mapping and profiling for answering “what”, “where”, “how many” and “whose” chemicals underlie the clinical phenotypes, which are assessed by biochemical profiling, MS imaging, molecular targeting and probing, biomarker grading disease classification, etc. These features can potentially enhance the precision of disease diagnosis, monitoring and treatment and thus further transform medicine. For instance, comprehensive MS-based biochemical profiling of ovarian tumors was performed, and the results revealed a number of molecular insights into the pathways and processes that drive ovarian cancer biology and the ways that these pathways are altered in correspondence with clinical phenotypes. Another study demonstrated that quantitative biomarker mapping can be predictive of responses to immunotherapy and of survival in the supposedly homogeneous group of breast cancer patients, allowing for stratification of patients. In this context, our article attempts to provide an overview of MS-based chemical mapping and profiling, and a perspective on their clinical utility to improve the molecular understanding of diseases for advancing precision medicine.

An overview of MS-based chemical mapping and profiling, indicating its contributions to the molecular understanding of diseases in precision medicine by answering "what", "where", "how many" and "whose” chemicals underlying clinical phenotypes.  相似文献   
82.
In spite of great commercial importance of the Phillips CrOx/SiO2 catalyst and long term research efforts, the precise physicochemical nature of active sites and polymerization mechanisms still remains unclear. The difficulties in a clear mechanistic understanding of this catalyst mainly come from the complexity of the surface chemistry of the amorphous silica gel support. In this work, novel silsesquioxane-supported Phillips Cr catalysts are utilized as realistic models of the industrial catalyst for theoretical investigation using the density functional theory (DFT) method in order to elucidate the effects of surface chemistry of silica gel in terms of supporting of chromium compounds and fluorination of the silica surface on the catalytic properties of the Phillips catalyst. Both qualitative and quantitative aspects with respect to various electronic properties and thermodynamic characteristics of the model catalysts were achieved. The future prospects of a state-of-the-art catalyst design and mechanistic approaches for the heterogeneous SiO2-supported Phillips catalyst has been demonstrated. The text was submitted by the authors in English.  相似文献   
83.
He P  Ye J  Fang Y  Anzai J  Osa T 《Talanta》1997,44(5):885-890
Based on self-assembled biotinylated disulfide derivative monolayer on gold electrode, the sensors immobilized monolayer or multilayer membranes composed of avidin and biotinlabeled glucose oxidase (B.GOD) or of avidin-B.GOD complex (ABC) and B.COD were prepared. The present technique may be useful for controlling the enzyme content of the sensors in molecular level by repeating the deposition of enzyme layers. The sensors have the characteristics of shorter response time, higher sensitivity. The linear range is from 6.0 x 10(-6) - 5.0 x 10(-3) M. The sensor can be used for more than 1 month and can be reactivated. The sensor was used to determine glucose in human blood serum, and the results are satisfactory.  相似文献   
84.
Infrared spectroscopy studies of methyl 4-hydroxybenzoate (MHB) in 17 different organic solvents and in ethanol/CCl4 binary solvent were undertaken to investigate the solvent-solute interactions. The frequencies of carbonyl stretching vibration nu(C=O) of MHB in single solvents were correlated with the solvent acceptor number (AN) and the linear solvation energy relationships (LSER). The assignments of the two bands of nu(C=O) of MHB in alcohols and the single one of that in non-alcoholic solvents were discussed. The shifts of nu(C=O) of MHB in ethanol/CCl4 binary solvents showed that several kinds of solute-solvent hydrogen bonding interactions coexisted in the mixture solvents, with a change in the mole fraction of ethanol in the binary solvents.  相似文献   
85.
In recent years a number of exciting developments have emerged in the area of scientific computational tools for classroom use. Computer Algebra Systems (CASs), for example, Maple, are at the forefront of this arena. Such tools have been long sought by teachers of physical chemistry, inherently a mathematics intensive subject. With a CAS at hand, students can look forward to taking college science courses, like physical chemistry, without the usual mathematics anxiety. These tools can be used to do numerical and symbolic mathematics including calculus and linear algebra. In addition, they have wonderful graphics capabilities that include three-dimensional plots, contour plots, and animations. This paper describes the implementation of Maple in two junior-level physical chemistry courses. The materials used for beginning workshops are presented here and additional examples of Maples graphic and algebraic capabilities are described.  相似文献   
86.
A novel dinuclear nickel(II) complex, [Ni2(MOBPT)2Cl2(H2O)2]Cl2 · 7H2O (MOBPT = 4-(p-methoxyphenyl) −3,5-bis(pyridine-2-yl)-1,2,4-triazole), has been synthesized and characterized by elemental analysis, IR and single crystal X-ray diffraction methods. The crystal structure determination shows that the dinuclear Ni2N8 unit is almost planer in which each NiII ion is coordinated by four nitrogen atoms from MOBPT equatorially and a water molecule and a chloride ion axially in a distorted octahedral geometry. Magnetic measurements reveal a relatively weak antiferromagnetic exchange in the complex.  相似文献   
87.
88.
Purmorphamine, which is a 2,6,9-trisubstituted purine compound, was discovered through cell-based high-throughput screening from a heterocycle combinatorial library. It differentiates multipotent mesenchymal progenitor cells into an osteoblast lineage. It will serve as a unique chemical tool to study the molecular mechanisms of osteogenesis of stem cells and bone development.  相似文献   
89.
A new method based on near-infrared (near-IR) fluorescence recovery, employing a two-reagent system which is composed of an anionic heptamethylene cyanine (HMC) and a polycationic phthalocyanine dye, Alcian blue 8GX, is presented for the determination of nucleic acids. With a maximum excitation wavelength at 766 nm and a maximum emission wavelength at 796 nm, the fluorescence recovery is linear with the concentration of nucleic acids added. Factors including the acidity of the medium, the reaction time, the optimal ratio of the two reagents, as well as the influence of foreign substance were all investigated. Meanwhile, the mechanism of fluorescence recovery was also studied. Under the optimal conditions, the linear ranges of the calibration curves were 10-250 ng ml−1 for calf thymus DNA (CT DNA) and 10-200 ng ml−1 for yeast RNA. The detection limits were 6.8 ng ml−1 for CT DNA and 6.3 ng ml−1 for yeast RNA, respectively. The method has been applied to the analysis of practical samples and the recovery results were satisfactory.  相似文献   
90.
Self-assembled zinc oxide (ZnO) and indium-doping zinc oxide (ZnO:In) nanorod thin films were synthesized on quartz substrates without catalyst in aqueous solution by sol-gel method. The samples were characterized by x-ray diffraction (XRD), scanning electron microscope (SEM), Raman-scattering spectroscopy, room-temperature photoluminescence (PL) spectra, and temperature-dependent PL spectra measurements. XRD and Raman spectra illustrated that there were no single In2O3 phase in ZnO lattice after indium doping. The PL spectra of ZnO showed a strong UV emission band located at 394 nm and a very weak visible emission associated with deep-level defects. Indium incorporation induced the shift of optical band gap, quenching of the near-band-edge photoluminescence and enhanced LO mode multiphonon resonant Raman scattering in ZnO crystals at different temperatures. Abnormal temperature dependence of UV emission integrated intensity of ZnO and ZnO:In samples is observed. The local state emission peak of ZnO:In samples at 3.37 eV is observed in low-temperature PL spectra. The near-band-edge emission peak at room temperature was a mixture of excitons and impurity-related transitions for both of two samples.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号