首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   36篇
  免费   4篇
  国内免费   3篇
化学   31篇
力学   2篇
数学   9篇
物理学   1篇
  2023年   2篇
  2022年   4篇
  2021年   1篇
  2020年   1篇
  2019年   2篇
  2018年   3篇
  2017年   4篇
  2016年   2篇
  2015年   3篇
  2013年   2篇
  2012年   4篇
  2011年   2篇
  2010年   1篇
  2009年   3篇
  2008年   2篇
  2004年   1篇
  2003年   1篇
  1998年   1篇
  1994年   3篇
  1991年   1篇
排序方式: 共有43条查询结果,搜索用时 109 毫秒
41.
Three‐dimensional graphene‐supported mesoporous silica@Fe3O4 composites (mSiO2@Fe3O4‐G) were prepared by modifying mesoporous SiO2‐coated Fe3O4 onto hydrophobic graphene nanosheets through a simple adsorption co‐condensation method. The obtained composites possess unique properties of large surface area (332.9 m2/g), pore volume (0.68 cm3/g), highly open pore structure with uniform pore size (31.1 nm), as well as good magnetic separation properties. The adsorbent (mSiO2@Fe3O4‐G) was used for the magnetic solid‐phase extraction of seven pesticides with benzene rings in different aqueous samples before high‐performance liquid chromatography. The main parameters affecting the extraction such as adsorbent amount, volume of elution solvent, time of extraction and desorption, salt effect, oscillation rate were investigated. Under the optimal conditions, this method provided low limits of detection (S/N = 3, 0.525–3.30 μg/L) and good linearity (5.0–1000 μg/L, R2 > 0.9954). Method validation proved the feasibility of the developed adsorbent, which has a high extraction efficiency and excellent enhancement performance for pesticides in this study. The proposed method was successfully applied to real aqueous samples, and satisfactory recoveries ranging from 77.5 to 113.6% with relative standard deviations within 9.7% were obtained.  相似文献   
42.
Two kinds of mesoporous cellular foams (MCFs), including mesoporous silica materials (MCF-1) and phenyl modified mesoporous materials (Ph-MCF-1), were synthesized and for the first time used as fiber-coating materials for solid-phase microextraction (SPME). By using stainless steel wire as the supporting core, four types of fibers were prepared by sol–gel method and immobilized by epoxy-resin method. To evaluate the performance of the home-made fibers for SPME, seven brominated flame retardants (BFRs), including tetrabromobisphenol A (TBBPA), tetrabromobisphenol S (TBBPS) and related compounds were selected as analytes. The main parameters that affect the extraction and desorption efficiencies, such as extraction temperature, extraction time, desorption time, stirring rate and ionic strength of samples were investigated and optimized. The optimized SPME coupled with high performance liquid chromatography (HPLC) was successfully applied to the determination of the seven BFRs in water samples. The linearity range was from 5.0 to 1000 μg L−1 for each compound except TBBPS (from 1.0 to 1000 μg L−1), with the correlation coefficients (r2) ranging from 0.9993 to 0.9999. The limits of detection of the method were 0.4–0.9 μg L−1. The relative standard deviations varied from 1.2 to 5.1% (n = 5). The repeatability of fiber-to-fiber and batch-to-batch was 2.5–6.5% and 3.2–6.7%. The recoveries of the BFRs from aqueous samples were in the range between 86.5 and 103.6%. Compared with three commercial fibers (100 μm PDMS, 85 μm PA and 65 μm PDMS/DVB), the MCFs-coated fiber showed about 3.5-fold higher extraction efficiency.  相似文献   
43.
In this paper, we consider a bi‐quadratic homogeneous polynomial optimization problem over two unit spheres arising in nonlinear elastic material analysis and in entanglement studies in quantum physics. The problem is equivalent to computing the largest M‐eigenvalue of a fourth‐order tensor. To solve the problem, we propose a practical method whose validity is guaranteed theoretically. To make the sequence generated by the method converge to a good solution of the problem, we also develop an initialization scheme. The given numerical experiments show the effectiveness of the proposed method. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号