首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1323篇
  免费   132篇
  国内免费   115篇
化学   831篇
晶体学   28篇
力学   65篇
综合类   6篇
数学   208篇
物理学   432篇
  2023年   19篇
  2022年   37篇
  2021年   40篇
  2020年   33篇
  2019年   36篇
  2018年   40篇
  2017年   41篇
  2016年   42篇
  2015年   58篇
  2014年   77篇
  2013年   99篇
  2012年   96篇
  2011年   104篇
  2010年   66篇
  2009年   47篇
  2008年   66篇
  2007年   68篇
  2006年   74篇
  2005年   46篇
  2004年   51篇
  2003年   33篇
  2002年   29篇
  2001年   28篇
  2000年   28篇
  1999年   28篇
  1998年   22篇
  1997年   20篇
  1996年   18篇
  1995年   22篇
  1994年   12篇
  1993年   7篇
  1992年   13篇
  1991年   12篇
  1990年   11篇
  1989年   9篇
  1988年   7篇
  1987年   5篇
  1986年   7篇
  1985年   9篇
  1984年   11篇
  1982年   7篇
  1981年   9篇
  1980年   21篇
  1979年   6篇
  1977年   8篇
  1976年   5篇
  1974年   6篇
  1973年   6篇
  1972年   4篇
  1969年   4篇
排序方式: 共有1570条查询结果,搜索用时 15 毫秒
981.
非线性光学晶体多功能测试系统   总被引:5,自引:4,他引:5  
采用现代激光技术和光电子技术,根据晶体光学原理与非线性光学晶体的习性,设计了非线性光学晶体多功能测试系统.本系统具有结构紧凑,稳定可靠,一机多能的测试功能.  相似文献   
982.
高功率激光器喷雾冷却的实验研究   总被引:1,自引:1,他引:1       下载免费PDF全文
以水为冷却介质,采用Spray公司的TG0.3机械雾化实心圆锥喷嘴,在体积通量为0.044,0.049和0.053 m3/(m2·s)情况下,对刻有不同微结构槽道冷却面的无沸腾区换热性能进行实验研究。结果表明:刻有微结构的表面可明显增强换热效果;壁面刻有高为0.2 mm的微结构槽道且壁面温度为52 ℃时,体积通量为0.044 m3/(m2·s则热流可达260 W/cm2,通量为0.053 m3/(m2·s则散热功率高达376 W/cm2,完全可以满足当前高功率激光器的散热需求。对于光滑面以及槽肋高为0.1和0.2 mm的换热面,其换热能力随着体积通量的增加而增强;换热面高度为0.4 mm时,通量对换热的影响变得较微弱。微结构槽道不仅增加了换热面积,还有利于液膜扩散,减小液膜厚度,增强换热。在三种不同的流量通量下,高度为0.2 mm的微结构槽道换热性能最佳。  相似文献   
983.
In this paper we shall show how to calculate the single vibronic-level electron-transfer rate constant, which will be compared with the thermal averaged one. To apply the theoretical results to the dye-sensitized solar cells, we use a simple model to describe how we model the final state of the electron-transfer process. Numerical calculations will be performed to demonstrate the theoretical results.  相似文献   
984.
Three acceptor-donor-acceptor (A-D-A) small molecules DCAODTBDT, DRDTBDT and DTBDTBDT using dithieno[2,3-d:2′,3′-d′]benzo[1,2-b:4,5-b′]dithiophene as the central building block, octyl cyanoacetate, 3-octylrhodanine and thiobarbituric acid as the end groups were designed and synthesized as donor materials in solution-processed photovoltaic cells (OPVs). The impacts of these different electron withdrawing end groups on the photophysical properties, energy levels, charge carrier mobility, morphologies of blend films, and their photovoltaic properties have been systematically investigated. OPVs device based on DRDTBDT gave the best power conversion efficiency (PCE) of 8.34%, which was significantly higher than that based on DCAODTBDT (4.83%) or DTBDTBDT (3.39%). These results indicate that rather dedicated and balanced consideration of absorption, energy levels, morphology, mobility, etc. for the design of small-molecule-based OPVs (SM-OPVs) and systematic investigations are highly needed to achieve high performance for SM-OPVs.  相似文献   
985.
We give good approximate analytic solutions for spherical charged boson stars in the large scalar-self-coupling limit in general relativity. We show that if the charge e and mass m of the scalar field nearly satisfy the critical relation \(e^2\approx Gm^2\) (where G is the Newton constant), our analytic expressions for stable solutions agree well with the numerical solutions.  相似文献   
986.
This paper reports a comprehensive study on the synthesis and self-assembly of two model series of molecular shape amphiphiles, namely, hydrophilic [60]fullerene (AC(60)) tethered with one or two polystyrene (PS) chain(s) at one junction point (PS(n)-AC(60) and 2PS(n)-AC(60)). The synthesis highlighted the regiospecific multiaddition reaction for C(60) surface functionalization and the Huisgen 1,3-dipolar cycloaddition between alkyne functionalized C(60) and azide functionalized polymer to give rise to shape amphiphiles with precisely defined surface chemistry and molecular topology. When 1,4-dioxane/DMF mixture was used as the common solvent and water as the selective solvent, these shape amphiphiles exhibited versatile self-assembled micellar morphologies which can be tuned by changing various parameters, such as molecular topology, polymer tail length, and initial molecular concentration, as revealed by transmission electron microscopy and light scattering experiments. In the low molecular concentration range of equal or less than 0.25 (wt) %, micellar morphology of the series of PS(n)-AC(60) studied was always spheres, while the series of 2PS(n)-AC(60) formed vesicles. Particularly, PS(44)-AC(60) and 2PS(23)-AC(60) are synthesized as a topological isomer pair of these shape amphiphiles. PS(44)-AC(60) formed spherical micelles while 2PS(23)-AC(60) generated bilayer vesicles under identical conditions. The difference in the self-assembly of PS(n)-AC(60) and 2PS(n)-AC(60) was understood by the molecular shape aspect ratio. The stretching ratio of PS tails decreased with increasing PS tail length in the spherical micelles of PS(n)-AC(60), indicating a micellar behavior that changes from small molecular surfactant-like to amphiphilic block copolymer-like. For the series of PS(n)-AC(60) in the high molecular concentration range [>0.25 (wt) %], their micellar morphological formation of spheres, cylinders, and vesicles was critically dependent upon both the initial molecular concentration and the PS tail length. On the other hand, the series of 2PS(n)-AC(60) remained in the state of bilayer vesicles in the same concentration range. Combining both of the experimental results obtained in the low and high molecular concentrations, a systematic morphological phase diagram was constructed for the series of PS(n)-AC(60) with different PS tail lengths. The versatile and concentration-sensitive phase behaviors of these molecular shape amphiphiles are unique and have not been systematically explored in the traditional surfactants and block copolymers systems.  相似文献   
987.
The complete fusion excitation function for the 16O+natS reaction has been measured in the range of 50-75 MeV with a step of 1.0MeV by using 1a position sensitive △E-E telescope system. The model parameters have been extracted from data analysis.The striking gross structure of the excitation function has been observed. The energies of peaks are at ECM=38,43 and 48 MeV respectively.  相似文献   
988.
Hydrogen production by catalytic steam reforming of the bio-oil, naphtha, and CH4 was investigated over anovel metal-doped catalyst of (Ca24Al28O64)4+¢4O-/Mg (C12A7-Mg). The catalytic steam reforming wasinvestigated from 250 to 850 ±C in the ˉxed-bed continuous °ow reactor. For the reforming of bio-oil, theyield of hydrogen of 80% was obtained at 750 ±C, and the maximum carbon conversion is nearly close to95% under the optimum steam reforming condition. For the reforming of naphtha and CH4, the hydrogenyield and carbon conversion are lower than that of bio-oil at the same temperature. The characteristics ofcatalyst were also investigated by XPS. The catalyst deactivation was mainly caused by the deposition ofcarbon in the catalytic steam reforming process.  相似文献   
989.
测量了16O+232Th、238U和19F+232Th近垒和垒下熔合裂变截面以及碎片角分布.包含靶核静态形变的耦合道理论解释了垒下熔合截面增强,预言了复合核系统自旋分布展宽.而实验上观察到的碎片角分布各向异性明显与裂变统计理论的预言不一致.  相似文献   
990.
Cross‐effect (CE) dynamic nuclear polarization (DNP) is a rapidly developing technique that enhances the signal intensities in magic‐angle spinning (MAS) NMR spectra. We report CE DNP experiments at 211, 600, and 800 MHz using a new series of biradical polarizing agents referred to as TEMTriPols, in which a nitroxide (TEMPO) and a trityl radical are chemically tethered. The TEMTriPol molecule with the optimal performance yields a record 1H NMR signal enhancement of 65 at 800 MHz at a concentration of 10 mM in a glycerol/water solvent matrix. The CE DNP enhancement for the TEMTriPol biradicals does not decrease as the magnetic field is increased in the manner usually observed for bis‐nitroxides. Instead, the relatively strong exchange interaction between the trityl and nitroxide moieties determines the magnetic field at which the optimum enhancement is observed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号