首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6729篇
  免费   1039篇
  国内免费   674篇
化学   4911篇
晶体学   61篇
力学   323篇
综合类   17篇
数学   751篇
物理学   2379篇
  2024年   23篇
  2023年   177篇
  2022年   281篇
  2021年   287篇
  2020年   313篇
  2019年   291篇
  2018年   241篇
  2017年   236篇
  2016年   364篇
  2015年   345篇
  2014年   394篇
  2013年   478篇
  2012年   609篇
  2011年   640篇
  2010年   407篇
  2009年   411篇
  2008年   406篇
  2007年   385篇
  2006年   318篇
  2005年   282篇
  2004年   193篇
  2003年   183篇
  2002年   158篇
  2001年   112篇
  2000年   98篇
  1999年   122篇
  1998年   105篇
  1997年   91篇
  1996年   86篇
  1995年   73篇
  1994年   60篇
  1993年   47篇
  1992年   60篇
  1991年   39篇
  1990年   27篇
  1989年   29篇
  1988年   19篇
  1987年   12篇
  1986年   9篇
  1985年   12篇
  1984年   6篇
  1983年   3篇
  1982年   6篇
  1981年   2篇
  1980年   1篇
  1957年   1篇
排序方式: 共有8442条查询结果,搜索用时 15 毫秒
21.
The accuracy of biological simulations depends, in large part, on the treatment of electrostatics. Due to the availability of accurate experimental values, calculation of pKa provides stringent evaluation of computational methods. The generalized solvent boundary potential (GSBP) and Ewald summation electrostatic treatments were recently implemented for combined quantum mechanical and molecular mechanics (QM/MM) simulations by our group. These approaches were tested by calculating pKa shifts due to differences in electronic structure and electrostatic environment; the shifts were determined for a series of small molecules in solution, using various electrostatic treatments, and two residues (His 31, Lys 102) in the M102K T4-lysozyme mutant with large pKa shifts, using the GSBP approach. The calculations utilized a free energy perturbation scheme with the QM/MM potential function involving the self-consistent charge density functional tight binding (SCC-DFTB) and CHARMM as the QM and MM methods, respectively. The study of small molecules demonstrated that inconsistent electrostatic models produced results that were difficult to correct in a robust manner; by contrast, extended electrostatics, GSBP, and Ewald simulations produced consistent results once a bulk solvation contribution was carefully chosen. In addition to the electrostatic treatment, the pKa shifts were also sensitive to the level of the QM method and the scheme of treating QM/MM Coulombic interactions; however, simple perturbative corrections based on SCC-DFTB/CHARMM trajectories and higher level single point energy calculations were found to give satisfactory results. Combining all factors gave a root-mean-square difference of 0.7 pKa units for the relative pKa values of the small molecules compared to experiment. For the residues in the lysozyme, an accurate pKa shift was obtained for His 31 with multiple nanosecond simulations. For Lys 102, however, the pKa shift was estimated to be too large, even after more than 10 nanosecond simulations for each lambda window; the difficulty was due to the significant, but slow, reorganization of the protein and water structure when Lys 102 was protonated. The simulations support that Lys 102 is deprotonated in the X-ray structure and the protein is highly destabilized when this residue is protonated.  相似文献   
22.
LC-ESI-MS Determination of Bilobalide and Ginkgolides in Canine Plasma   总被引:1,自引:0,他引:1  
A sensitive and selective method using liquid chromatography with electrospray ionization mass spectrometric detection was developed for the quantification of bilobalide and ginkgolides in canine plasma. The analytes were extracted with diethyl ether-dichloromethane-isopropanol (6:3:1, v/v) after spiking the samples with daidzein (internal standard). The lower limit of quantification (LLOQ) of the method was 2.5 μg L−1 for ginkgolide B and 10.0 μg L−1 for bilabolide, ginkgolide A and ginkgolide C. The accuracy of the method was within 15% of the actual values over a wide range of plasma concentrations. The intra-day and inter-day precision was better than 15% (R.S.D.). Finally, the LC-ESI-MS method was successfully applied to study the pharmacokinetics of ginkgolides and bilabolide after administration of Ginkgo biloba extracts to dogs.  相似文献   
23.
The scattering cross sections for arbitrarily shaped dielectric objects with rough surface are determined for optical and infrared frequencies using the Kirchhoff approximation. The formula of the coherent scattering cross section is derived, and numerical method of incoherent scattering cross section is given. As a specific example, the infrared laser scattering cross sections of rough spheres are calculated at 1.06 m.  相似文献   
24.
The role of tunneling for two proton-transfer steps in the reactions catalyzed by triosephosphate isomerase (TIM) has been studied. One step is the rate-limiting proton transfer from Calpha in the substrate to Glu 165, and the other is an intrasubstrate proton transfer proposed for the isomerization of the enediolate intermediate. The latter, which is not important in the wild-type enzyme but is a useful model system because of its simplicity, has also been examined in the gas phase and in solution. Variational transition-state theory with semiclassical ground-state tunneling was used for the calculation with potential energy surface determined by an AM1 method specifically parametrized for the TIM system. The effect of tunneling on the reaction rate was found to be less than a factor of 10 at room temperature; the tunneling becomes more important at lower temperature, as expected. The imaginary frequency (barrier) mode and modes that have large contributions to the reaction path curvature are localized on the atoms in the active site, within 4 A of the substrate. This suggests that only a small number of atoms that are close to the substrate and their motions (e.g., donor-acceptor vibration) directly determine the magnitude of tunneling. Atoms that are farther away influence the effect of tunneling indirectly by modulating the energetics of the proton transfer. For the intramolecular proton transfer, tunneling was found to be most important in the gas phase, to be similar in the enzyme, and to be the smallest in water. The major reason for this trend is that the barrier frequency is substantially lower in solution than in the gas phase and enzyme; the broader solution barrier is caused by the strong electrostatic interaction between the highly charged solute and the polar solvent molecules. Analysis of isotope effects showed that the conventional Arrenhius parameters are more useful as experimental criteria for determining the magnitude of tunneling than the widely used Swain-Schaad exponent (SSE). For the primary SSE, although values larger than the transition-state theory limit (3.3) occur when tunneling is included, there is no clear relationship between the calculated magnitudes of tunneling and the SSE. Also, the temperature dependence of the primary SSE is rather complex; the value of SSE tends to decrease as the temperature is lowered (i.e., when tunneling becomes more significant). For the secondary SSE, the results suggest that it is more relevant for evaluating the "coupled motion" between the secondary hydrogen and the reaction coordinate than the magnitude of tunneling. Although tunneling makes a significant contribution to the rate of proton transfer, it appears not to be a major aspect of the catalysis by TIM at room temperature; i.e., the tunneling factor of 10 is "small" relative to the overall rate acceleration by 10(9). For the intramolecular proton transfer, the tunneling in the enzyme is larger by a factor of 5 than in solution.  相似文献   
25.
A novel thermo-responsive 2,9(10),16(17),23(24)-tetrakis[(3-carboxyacrylamide) phthalocyaninato] zinc (ZnPc)-g-TiO2-g-poly(N-isopropylacrylamide) (PNIPAM) photocatalyst modified with phthalocyanines was prepared. The photocatalyst exhibited thermo-responsive properties due to the introduction of PNIPAM, which performed recovery for reuse above the lower critical solution temperature (LCST, about 26 °C). ZnPc-g-TiO2-g-PNIPAM effectively expanded the light response range to the visible light region and inhibited the recombination of electron–hole pairs, which enhanced the performance of the photocatalyst. As expected, ZnPc-g-TiO2-g-PNIPAM (0.3 g/L) exhibited excellent photocatalytic performance for the removal of Rhodamine B (RhB, 1.0 × 10−5 mol/L) and methylene blue (MB, 1.0 × 10−5 mol/L) under visible light, which reached 97.2% and 88.6% at 20 °C within 40 min, respectively. Furthermore, the influence of temperature upon photocatalytic performance was also investigated. When the temperature increased from 20 °C to 45 °C, the removal of RhB decreased by approximately 53.8%. The stability of the photocatalyst demonstrated that the photocatalytic activity was still above 80% for the removal of RhB after 3 cycles. Above all, this work provided an intelligent thermally responsive photocatalyst based on phthalocyanine for water purification under visible light.  相似文献   
26.
The structural characterization, the in vitro antioxidant activity, and the hypoglycemic activity of a polysaccharide (SGP-1-1) isolated from Siraitia grosvenorii (SG) were studied in this paper. SGP-1-1, whose molecular weight is 19.037 kDa, consisted of Gal:Man:Glc in the molar ratio of 1:2.56:4.90. According to the results of methylation analysis, GC–MS, and NMR, HSQC was interpreted as a glucomannan with a backbone composed of 4)-β-D-Glcp-(1→4)-, α-D-Glcp-(1→4)-, and 4)-Manp-(1 residues. α-1,6 linked an α-D-Galp branch, and α-1,6 linked an α-D-Glcp branch. The study indirectly showed that SGP-1-1 has good in vitro hypoglycemic and antioxidant activities and that these activities may be related to the fact that the SGP-1-1’s monosaccharide composition (a higher proportion of Gal and Man) is the glycosidic-bond type (α- and β-glycosidic bonds). SGP-1-1 could be used as a potential antioxidant and hypoglycemic candidate for functional and nutritional food applications.  相似文献   
27.
Mulberry extract has been proven to have the effect of resisting alcohol damage, but its mechanism is still unclear. In this study, the composition of mulberry ethanol extract (MBE) was identified by LC-MS/MS and the main components of MBE were ascertained by measuring. Gastric mucosal epithelial (GES-1) cells were used to elucidate the mechanism of MBE and rutin (the central part of MBE) helped protect against alcohol damage. The results revealed that phenolics accounted for the majority of MBE, accounting for 308.6 mg/g gallic acid equivalents and 108 substances were identified, including 37 flavonoids and 50 non-flavonoids. The treatment of 400 μg/mL MBE and 320 μM rutin reduced early cell apoptosis and the content of intracellular reactive oxygen species, malondialdehyde and increased glutathione. The qPCR results indicated that the MBE inhibits the expression of genes in the mitogen-activated protein kinase (MAPK) pathway, including p38, JNK, ERK and caspase-3; rutin inhibits the expression of p38 and caspase-3. Overall, MBE was able to reduce the oxidative stress of GES-1 cells and regulated apoptosis-related genes of the MAPK pathway. This study provides information for developing anti-ethanol injury drugs or functional foods.  相似文献   
28.
In 1949, Tolman found the relation between the surface tension and Tolman length, which determines the dimensional effect of the surface tension. Tolman length is the difference between the equimolar surface and the surface of tension. In recent years, the magnitude, expression, and sign of the Tolman length remain an open question. An incompressible and homogeneous liquid droplet model is proposed and the approximate expression and sign for Tolman length are derived in this paper. We obtain the relation between Tolman length and the radius of the surface of tension(Rs) and found that they increase with the Rs decreasing. The Tolman length of plane surface tends to zero. Taking argon for example, molecular dynamics simulation is carried out by using the Lennard–Jones(LJ) potential between atoms at a temperature of 90 K. Five simulated systems are used, with numbers of argon atoms being 10140, 10935, 11760, 13500, and 15360, respectively. By methods of theoretical study and molecular dynamics simulation, we find that the calculated value of Tolman length is more than zero, and it decreases as the size is increased among the whole size range. The value of surface tension increases with the radius of the surface of tension increasing, which is consistent with Tolman’s theory. These conclusions are significant for studying the size dependence of the surface tension.  相似文献   
29.
Ferulasinkins A–D (1–4), four new norlignans, were isolated from the resins of Ferula sinkiangensis, a medicinal plant of the Apiaceae family. All of them were obtained as racemic mixtures, chiral HPLC was used to produce their (+)- and (−)-antipodes. The structures of these new compounds, including their absolute configurations, were elucidated by spectroscopic and computational methods. This isolation provides new insight into the chemical profiling of F. sinkiangensis resins beyond the well-investigated structure types such as sesquiterpene coumarins and disulfides. Compounds 2a and 3a were found to significantly inhibit the invasion and migration of triple-negative breast cancer (TNBC) cell lines via CCK-8 assay. On the other hand, the wound-healing assay also demonstrated that compounds 4a and 4b could promote the proliferation of human umbilical vein endothelial cells (HUVECs). Notably, the promoting effects of 4a and 4b were observed as more significant versus a positive control using basic fibroblast growth factor (bFGF).  相似文献   
30.
In order to explore a rapid identification method for the anti-counterfeit of commercial high value collections, a three-step infrared spectrum method was used for the pterocarpus collection identification to confirm whether a commercial pterocarpus bracelet (PB) was made from the precious species of Pterocarpus santalinus (P. santalinus). In the first step, undertaken by Fourier transform infrared spectroscopy (FTIR) spectrum, the absorption peaks intensity of PB was slightly higher than that of P. santalinus only at 1594 cm−1, 1205 cm−1, 1155 cm−1 and 836 cm−1. In the next step of second derivative IR spectra (SDIR), the FTIR features of the tested samples were further amplified, and the peaks at 1600 cm−1, 1171 cm−1 and 1152 cm−1 become clearly defined in PB. Finally, by means of two-dimensional correlation infrared (2DIR) spectrum, it revealed that the response of holocellulose to thermal perturbation was stronger in P. santalinus than that in PB mainly at 977 cm−1, 1008 cm−1, 1100 cm−1, 1057 cm−1, 1190 cm−1 and 1214 cm−1, while the aromatic functional groups of PB were much more sensitive to the thermal perturbation than those of P. santalinus mainly at 1456 cm−1, 1467 cm−1, 1518 cm−1, 1558 cm−1, 1576 cm−1 and 1605 cm−1. In addition, fluorescence microscopy was used to verify the effectiveness of the above method for wood identification and the results showed good consistency. This study demonstrated that the three-step IR method could provide a rapid and effective way for the anti-counterfeit of pterocarpus collections.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号