首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   37460篇
  免费   6490篇
  国内免费   4309篇
化学   25830篇
晶体学   519篇
力学   2453篇
综合类   286篇
数学   4461篇
物理学   14710篇
  2024年   89篇
  2023年   764篇
  2022年   948篇
  2021年   1208篇
  2020年   1474篇
  2019年   1390篇
  2018年   1230篇
  2017年   1141篇
  2016年   1732篇
  2015年   1693篇
  2014年   2075篇
  2013年   2630篇
  2012年   3228篇
  2011年   3424篇
  2010年   2335篇
  2009年   2300篇
  2008年   2496篇
  2007年   2253篇
  2006年   2153篇
  2005年   1661篇
  2004年   1339篇
  2003年   1119篇
  2002年   1039篇
  2001年   838篇
  2000年   872篇
  1999年   827篇
  1998年   739篇
  1997年   688篇
  1996年   691篇
  1995年   621篇
  1994年   542篇
  1993年   430篇
  1992年   428篇
  1991年   331篇
  1990年   303篇
  1989年   241篇
  1988年   205篇
  1987年   172篇
  1986年   153篇
  1985年   152篇
  1984年   104篇
  1983年   72篇
  1982年   60篇
  1981年   36篇
  1980年   16篇
  1979年   10篇
  1977年   2篇
  1971年   1篇
  1959年   1篇
  1957年   3篇
排序方式: 共有10000条查询结果,搜索用时 453 毫秒
991.
Various two-dimensional (2D) NMR techniques are reported on a bent-core mesogen 4,6-dichloro-1,3-phenylenebis[4'-(9-decenyloxy)-1,1'-biphenyl] carboxylate in its nematic and solid phases in order to unambiguously assign its carbon-13 NMR spectrum. The (13)C chemical shifts from the molecular core were studied as a function of temperature to extract its molecular geometry and orientational order tensor. To this end, the chemical shift anisotropy tensors of some carbon sites were measured in the solid state of this mesogen using a recent method called the separation of undistorted powder patterns by effortless recoupling (SUPER). The average bending angle subtended by the two arms of the bent-core structure is determined to be 148.7 degrees. The C-H dipolar couplings obtained from the separated local field (SLF) experiment for the aromatic rings are used to find the local order parameter tensors.  相似文献   
992.
Instrumental neutron activation analysis (INAA) has been used for the determination of extractable organohalogens (EOX) in milk. The detection limits are 50 ng, 8 ng and 3.5 ng for Cl, Br and I, respectively. The EOX concentrations in milk samples from various regions of China were determined. Meanwhile, organochlorine pesticides residues were detected by gas chromatography. The concentrations of the EOX in the milk samples are decreasing in the order of EOCl >> EOBr > EOI, and EOCl accounts for 95% of the total EOX. The average concentration of EOCl in milk is 4.44 ·g/g expressed as fat weight basis, with the highest value of 17.6 ·g/g from South China. The mean concentrations of total HCH and DDT are 0.038 ·g/g and 0.046 ·g/g, respectively. Organochlorine pesticides account only for 1.6% of the EOCl, indicating the very high proportion of the unknown EOCl in the milk sample. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   
993.
This report presents a facile approach for the low‐temperature synthesis of crystalline inorganic‐oxide composite hollow spheres by employing the bulk controlled synthesis of inorganic‐oxide nanocrystals with polymer spheres as templates. The sulfonated polystyrene gel layer can adsorb the target precursor and induce inorganic nanocrystals to grow on the template in situ. The crystalline phase and morphology of the composite shell is tunable. By simply adjusting the acidity of the titania sol, crystalline titania composite hollow spheres with tunable crystalline phases of anatase, rutile, or a mixture of both were achieved. The approach is general and has been extended to synthesize the representative perovskite oxide (barium and strontium titanate) composite hollow spheres. The traditional thermal treatment for crystallite transformation is not required, thus intact shells can be guaranteed. The combination of oxide properties such as high refractive index, high dielectric constant, and catalytic ability with the cavity of the hollow spheres is promising for applications such as opacifiers, photonic crystals, high‐κ‐gate dielectrics, and photocatalysis.  相似文献   
994.
The formulation of organic–inorganic polymer composites can be used to enhance selected properties, such as susceptibility to microbial attack, thermal stability, mechanical strength and water sorption capability. Accordingly, a series of alginic acid–silica hydrogel films was prepared for testing as protective coating materials for PTFE osmotic distillation membranes. Unprotected hydrophobic membranes are subject to wet-out when contacted by surface-active agents, such as oils and detergents. Films containing 5, 10, 15 and 20 wt.% silica, with and without the addition of glycerol for plasticisation, moisturisation and silica dispersion, were characterised using scanning electron microscopy, X-ray diffraction, differential scanning calorimetry, mechanical strength measurements, and water-swelling measurements. Composites prepared with glycerol addition had better thermal stability, mechanical strength and water sorption capability than those prepared without glycerol addition. Uncoated membranes and membranes coated with composites prepared with glycerol addition were tested for OD performance and resistance to surface-active agents using pure water, orange oil (limonene)–water mixtures, and sodium dodecylbenzene sulfonate detergent solutions. Uncoated membranes showed immediate hydrophobicity loss in the presence of orange oil and detergent. For coated membranes, no wet-out occurred over the 15 h duration of three consecutive 5 h OD trials using orange oil–water mixtures. In the case of detergent solutions, the coating afforded protection to the membrane for 4–5 h. In a separate trial, no wet-out occurred when the coated side of the membrane was placed in contact with 1.2 wt.% orange oil for 72 h.  相似文献   
995.
Cell surface carbohydrates, usually binding with other biomacromolecules (such as lipids and proteins), are involved in numerous biological functions, including cellular recognition, adhesion, cell growth regulation, and inflammation. Synthetic carbohydrate-based polymers, so-called glycopolymers, are emerging as important well-defined tools for investigating carbohydrate-based biological processes and for simulating various functions of carbohydrates. In this study, a novel two-step sequence for the generation of a glycopolymer layer tethered on a polypropylene microporous membrane is described. First, a UV-induced graft polymerization of 2-aminoethyl methacrylate hydrochloride (AEMA) was carried out on the membrane to generate an amino-functionalized surface, and the effects of polymerization factors (monomer/initiator concentration and UV irradiation time) on the grafting density were studied. Second, sugar moieties were bound with the grafted functional layer to form glycopolymer by the reaction between the amino groups on the membrane surface and carbohydrate lactones. Chemical analysis by Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy combined with surface morphology observation by scanning electron microscopy confirmed the graft polymerization of AEMA and the formation of glycopolymer. The decreases of water contact angle and protein adsorption on the membrane revealed the enhancement of hydrophilicity and protein resistance due to the typical characteristics of the glycopolymer tethered on the surface. These results indicated that the novel sequence reported in this work is a facile process to form glycopolymer-modified surfaces.  相似文献   
996.
What is the most favorite and original chemistry developed in your research group? We focus on developing new organic photovoltaic materials and exploring their applications in photovoltaic devices. Based on the new materials, we can figure out the correlations among chemical strictures, optoelectronic properties, and photovoltaic behaviors. Our group originally demonstrated quite a few build blocks for making conjugated polymers for photovoltaic applications, some of them have been broadly used by the researchers in the field. How do you get into this specific field? Could you please share some experiences with our readers? I got into this field when I was a graduate student in 2002, just because my supervisor gave me a research topic for synthesis of new conjugated polymers. At that moment, as a fresh graduate student, I had no chance to say yes or no, but to do it. The field of organic solar cells is oriented by the new organic photovoltaic materials. In the past decades, the materials have been updated for a few generations, which promoted the device performance to be higher and closer to practical applications. We have to concentrate on the fundamental problems but also need to follow the pace of the filed. How do you supervise your students? In my opinion, the students need more specific projects to get into the field so as to be well trained at the beginning. In the later stage, I prefer to encourage them to find and creatively figure out the real fundamental problems. I used to give them a few questions: Why do you need to do this project? How to make a clear definition for the problem? Can you suggest a new and better approach to solve it? What is the most important personality for scientific research? Passion, perseverance and sense of innovation. What is your favorite journal(s)? The journals publishing the latest and/or systematic research works in chemistry and material science.  相似文献   
997.
We introduced an approach to the ion chromatographic determination of common mono- and divalent cations including hydrogen ion and demonstrated the ability of a C30 column dynamically coated first with dodecylsulfate and then with 18-crown-6 ether to separate the cations by ion-exchange mechanism. Using an ethylenediamine solution containing a small concentration of 18-crown-6 ether and lithium dodecylsulfate at pH 6.2 as eluent, the cations were eluted in the order Li < Na+ < NH4+ < H+ < K+ < Mg2+ < Ca2+ with symmetrical peaks. The conductivity vs. concentration plots were linear about three orders of magnitude, from millimolar to micromolar; and the detection limits were all < 0.6 microM. Rainwater was analyzed directly using this ion chromatographic system with satisfactory results.  相似文献   
998.
Reaction of the N-toluenesulfonyl derivatives of (S)-alanine, phenylalanine, and valine (4-6) with PhPCl(2) gave in high yield the 4-methyl, benzyl, and isopropyl derivatives (7-9) of 2-phenyl-1-p-toluenesulfonyl-1,3,2-oxazaphospholidin-5-one. The ratios of the (2S,4S)/(2R,4S) diastereomers (cis/trans isomers) were 1:1, 2:1, and 10:1 for the methyl, benzyl, and isopropyl derivatives 7a,b, 8a,b, and 9a,b, respectively. For 7a,b, both isomers could be crystallized, but for the others only the major isomers were isolable. The X-ray crystal structure of 9a shows that the isopropyl and phenyl groups are mutually cis and that the tolyl moiety is oriented s-trans to both the isopropyl and phenyl groups. Reaction of 6 with Cl(2)PCH(2)CH(2)PCl(2) (10) gave a 56:38:7 mixture of the cis/cis, cis/trans, and trans/trans diphosphorus heterocycles 11a-c. The major isomer could be crystallized and isolated free of the other diastereomers. Reaction of 6 with EtPCl(2) gave a 6:1 mixture of cis/trans isomers of the ethyl-substituted heterocycles 12a,b as an inseparable oil but allowed confirmation of the structure of 11a. Slow epimerization at phosphorus may occur by inversion but more likely by ring opening/closure, since 7b, 9a, and 11a give rise upon standing in solution to mixtures containing starting material and 7a, 9b, and 11b, respectively, along with the free amino acid derivatives 4 and 6. The NMR spectra, and in particular the coupling constants between the alpha-hydrogen atom of the amino acid moiety and phosphorus, were used to establish the identities of the cis and trans isomers. Reaction of 9a with (THF)W(CO)(5) gave the phosphorus-ligated adduct (9a)W(CO)(5) (13), and the IR spectrum of this complex shows that 9a is a strongly electron-withdrawing ligand. The geometry of the sulfonamide moiety is discussed in detail, as are the (1)H NMR coupling constants. The data are consistent with the presence of little steric interaction between the cis isopropyl and phosphorus substituent in 9a, 11a, and 12a and orientation of the tolyl moiety s-cis to the isopropyl group in 9b, 12b, and 13.  相似文献   
999.
1000.
We used coupling of flow and geometric confinement to assemble emulsion droplets in two-dimensional gliding lattices with a high degree of order and symmetry. Highly monodisperse discoid droplets with circular shapes were generated in a microfluidic flow-focusing device. Originally, close-packed lattices formed from these circular discoid droplets. Progressive confinement led to the gradual deformation of the circular disks: first, they elongated in the direction parallel to the direction of flow and then transformed into hexagons. Assembly driven by the combination of flow and confinement also allowed for the formation of lattices from droplets with a bimodal size distribution. We used photopolymerization of the monomer droplets to trap the lattice structure in the solid state and produce highly periodic arrays of solid polymer disks.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号