首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9325篇
  免费   1396篇
  国内免费   1105篇
化学   6607篇
晶体学   86篇
力学   415篇
综合类   102篇
数学   1030篇
物理学   3586篇
  2024年   23篇
  2023年   201篇
  2022年   341篇
  2021年   350篇
  2020年   393篇
  2019年   381篇
  2018年   317篇
  2017年   311篇
  2016年   446篇
  2015年   435篇
  2014年   550篇
  2013年   652篇
  2012年   829篇
  2011年   799篇
  2010年   529篇
  2009年   479篇
  2008年   607篇
  2007年   586篇
  2006年   479篇
  2005年   434篇
  2004年   298篇
  2003年   244篇
  2002年   234篇
  2001年   212篇
  2000年   221篇
  1999年   186篇
  1998年   176篇
  1997年   146篇
  1996年   160篇
  1995年   145篇
  1994年   109篇
  1993年   98篇
  1992年   80篇
  1991年   62篇
  1990年   63篇
  1989年   40篇
  1988年   37篇
  1987年   32篇
  1986年   26篇
  1985年   35篇
  1984年   15篇
  1983年   14篇
  1982年   15篇
  1981年   6篇
  1980年   7篇
  1979年   6篇
  1978年   2篇
  1977年   4篇
  1976年   6篇
  1962年   1篇
排序方式: 共有10000条查询结果,搜索用时 13 毫秒
981.
Constructing a reliable solid-electrolyte interphase (SEI) is imperative for enabling highly reversible zinc metal (Zn0) electrodes. Contrary to conventional “bulk solvation” mechanism, we found the SEI structure is dominated by electric double layer (EDL) adsorption. We manipulate the EDL adsorption and Zn2+ solvation with ether additives (i.e. 15-crown-5, 12-crown-4, and triglyme). The 12-crown-4 with medium adsorption on EDL leads to a layer-structured SEI with inner inorganic ZnFx/ZnSx and outer organic C−O−C components. This structure endows SEI with high rigidness and strong toughness enabling the 100 cm2 Zn||Zn pouch cell to exhibit a cumulative capacity of 4250 mAh cm−2 at areal-capacity of 10 mAh cm−2. More importantly, a 2.3 Ah Zn||Zn0.25V2O5n H2O pouch cell delivers a recorded energy density of 104 Wh Lcell−1 and runs for >70 days under the harsh conditions of low negative/positive electrode ratio (2.2 : 1), lean electrolyte (8 g Ah−1), and high-areal-capacity (≈13 mAh cm−2).  相似文献   
982.
We report a new strategy to fabricate a multifunctional composite photoanode containing TiO2 hollow spheres (TiO2-HSs), Au nanoparticles (AuNPs) and novel NaYF4 : Yb,Er@NaLuF4 : Eu@SiO2 upconversion nanoparticles (UCNPs). The AuNPs are grown on the photoanode film including TiO2-HSs and UCNPs by a simple in situ plasmonic treatment. As a result, an impressive power conversion efficiency of 14.13 % is obtained, which is a record for N719 dye-based dye-sensitized solar cells, demonstrating great potential for the solar cells toward commercialization. This obvious enhancement is ascribed to a collaborative mechanism of the TiO2-HSs exhibiting excellent light-scattering ability, of the UCNPs converting near-infrared photons into visible photons and of the AuNPs presenting outstanding surface plasmon resonance effect. Notably, a steady-state experiment further reveals that the champion cell exhibits 95.33 % retainment in efficiency even after 180 h of measurements, showing good device stability.  相似文献   
983.
The short-chain dehydrogenase/reductase (SDR) superfamily members acyl-ACP reductases FabG and FabI are indispensable core enzymatic modules and catalytic orientation controllers in type-II fatty acid biosynthesis. Herein, we report their distinct substrate allosteric recognition and enantioselective reduction mechanisms. FabG achieves allosteric regulation of ACP and NADPH through ACP binding across two adjacent FabG monomers, while FabI follows an irreversible compulsory order of substrate binding in that NADH binding must precede that of ACP on a discrete FabI monomer. Moreover, FabG and FabI utilize a backdoor residue Phe187 or a “rheostat” α8 helix for acyl chain length selection, and their corresponding triad residues Ser142 or Tyr145 recognize the keto- or enoyl-acyl substrates, respectively, facilitating initiation of nucleophilic attack by NAD(P)H. The other two triad residues (Tyr and Lys) mediate subsequent proton transfer and (R)-3-hydroxyacyl- or saturated acyl-ACP production.  相似文献   
984.
The direct utilization of metal–organic frameworks (MOFs) for electrocatalytic oxygen evolution reaction (OER) has attracted increasing interests. Herein, we employ the low-dose integrated differential phase contrast-scanning transmission electron microscopy (iDPC-STEM) technique to visualize the atomic structure of multivariate MOFs (MTV-MOFs) for guiding the structural design of bulk MOFs for efficient OER. The iDPC-STEM images revealed that incorporating Fe3+ or 2-aminoterephthalate (ATA) into Ni-BDC (BDC: benzenedicarboxylate) can introduce inhomogeneous lattice strain that weaken the coordination bonds, which can be selectively cleaved via a mild heat treatment to simultaneously generate coordinatively unsaturated metal sites, conductive Ni@C and hierarchical porous structure. Thus, excellent OER activity with current densities of 10 and 100 mA cm−2 are achieved over the defective MOFs at small overpotentials of 286 mV and 365 mV, respectively, which is superior to the commercial RuO2 catalyst and most of the bulk MOFs.  相似文献   
985.
A palladium-catalyzed oxidative amidation of conjugated olefin with 2-pyridone is described. A series of E-Enamides were synthesized in a highly stereocontrolled manner. The reaction also accommodates other cyclic and acyclic amides. Z-Enamides were predominantly prepared for primary amides probably due to the presence of an intramolecular hydrogen bond. Gram-scale synthesis of enamide and the following oxidative annulation with diphenylacetylene demonstrates the synthetic utility of this reaction.  相似文献   
986.
The electronic conductivity (EC) of metal–organic frameworks (MOFs) is sensitive to strongly oxidizing guest molecules. Water is a relatively mild species, however, the effect of H2O on the EC of MOFs is rarely reported. We explored the effect of H2O on the EC in the MOFs (NH2)2-MIL-125 and its derivatives with experimental and theoretical investigations. Unexpectedly, a large EC increase of 107 on H2SO4@(NH2)2-MIL-125 by H2O was observed. Brønsted acid–base pairs formed with the −NH2 groups, and H2SO4 played an important role in promoting the charge transfer from H2O to the MOF. Based on H2SO4@(NH2)2-MIL-125, a high-performance chemiresistive humidity sensor was developed with the highest sensitivity, broadest detection range, and lowest limit of detection amongst all reported sensing materials to date. This work not only demonstrated that H2O can remarkably influence the EC of MOFs, but it also revealed that post-modification of the structure of MOFs could enhance the influence of the guest molecule on their EC to design high-performance sensing materials.  相似文献   
987.
The artificial solid electrolyte interphase (SEI) plays a pivotal role in Zn anode stabilization but its long-term effectiveness at high rates is still challenged. Herein, to achieve superior long-life and high-rate Zn anode, an exquisite electrolyte additive, lithium bis(oxalate)borate (LiBOB), is proposed to in situ derive a highly Zn2+-conductive SEI and to dynamically patrol its cycling-initiated defects. Profiting from the as-constructed real-time, automatic SEI repairing mechanism, the Zn anode can be cycled with distinct reversibility over 1800 h at an ultrahigh current density of 50 mA cm−2, presenting a record-high cumulative capacity up to 45 Ah cm−2. The superiority of the formulated electrolyte is further demonstrated in the Zn||MnO2 and Zn||NaV3O8 full batteries, even when tested under harsh conditions (limited Zn supply (N/P≈3), 2500 cycles). This work brings inspiration for developing fast-charging Zn batteries toward grid-scale storage of renewable energy sources.  相似文献   
988.
Flexible batteries based on gel electrolytes with high safety are promising power solutions for wearable electronics but suffer from vulnerable electrode-electrolyte interfaces especially upon complex deformations, leading to irreversible capacity loss or even battery collapse. Here, a supramolecular sol-gel transition electrolyte (SGTE) that can dynamically accommodate deformations and repair electrode-electrolyte interfaces through its controllable rewetting at low temperatures is designed. Mediated by the micellization of polypropylene oxide blocks in Pluronic and host-guest interactions between α-cyclodextrin (α-CD) and polyethylene oxide blocks, the high ionic conductivity and compatibility with various salts of SGTE afford resettable electrode-electrolyte interfaces and thus constructions of a series of highly durable, flexible aqueous zinc batteries. The design of this novel gel electrolyte provides new insights for the development of flexible batteries.  相似文献   
989.
Competition from hydrogen/oxygen evolution reactions and low solubility of N2 in aqueous systems limited the selectivity and activity on nitrogen fixation reaction. Herein, we design an aerobic-hydrophobic Janus structure by introducing fluorinated modification on porous carbon nanofibers embedded with partially carbonized iron heterojunctions (Fe3C/Fe@PCNF-F). The simulations prove that the Janus structure can keep the internal Fe3C/Fe@PCNF-F away from water infiltration and endow a N2 molecular-concentrating effect, suppressing the competing reactions and overcoming the mass-transfer limitations to build a robust “quasi-solid–gas” state micro-domain around the catalyst surface. In this proof-of-concept system, the Fe3C/Fe@PCNF-F exhibits excellent electrocatalytic performance for nitrogen fixation (NH3 yield rate up to 29.2 μg h−1 mg−1cat. and Faraday efficiency (FE) up to 27.8 % in nitrogen reduction reaction; NO3 yield rate up to 15.7 μg h−1 mg−1cat. and FE up to 3.4 % in nitrogen oxidation reaction).  相似文献   
990.
Photocatalytic organic functionalization reactions represent a green, cost-effective, and sustainable synthesis route for value-added chemicals. However, heterogeneous photocatalysis is inefficient in directly activating ammonia molecules for the production of high-value-added nitrogenous organic products when compared with oxygen activation in the formation of related oxygenated compounds. In this study, we report the heterogeneous photosynthesis of benzonitriles by the ammoxidation of benzyl alcohols (99 % conversion, 93 % selectivity) promoted using BiOBr nanosheets with surface vacancy associates. In contrast, the main reaction of catalysts with other types of vacancy sites is the oxidation of benzyl alcohol to benzaldehyde or benzoic acid. Experimental measurements and theoretical calculations have demonstrated a specificity of vacancy type with respect to product selectivity, which arises from the adsorption and activation of NH3 and O2 that is required to promote subsequent C−N coupling and oxidation to nitrile. This study provides a better understanding of the role of vacancies as catalytic sites in heterogeneous photocatalysis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号