首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1833篇
  免费   313篇
  国内免费   187篇
化学   1294篇
晶体学   19篇
力学   96篇
综合类   11篇
数学   158篇
物理学   755篇
  2024年   8篇
  2023年   52篇
  2022年   70篇
  2021年   65篇
  2020年   102篇
  2019年   88篇
  2018年   58篇
  2017年   53篇
  2016年   82篇
  2015年   94篇
  2014年   80篇
  2013年   109篇
  2012年   128篇
  2011年   159篇
  2010年   118篇
  2009年   123篇
  2008年   127篇
  2007年   108篇
  2006年   118篇
  2005年   99篇
  2004年   58篇
  2003年   47篇
  2002年   45篇
  2001年   51篇
  2000年   37篇
  1999年   43篇
  1998年   30篇
  1997年   25篇
  1996年   33篇
  1995年   21篇
  1994年   30篇
  1993年   16篇
  1992年   12篇
  1991年   9篇
  1990年   7篇
  1989年   10篇
  1988年   8篇
  1987年   4篇
  1986年   1篇
  1985年   1篇
  1984年   3篇
  1982年   1篇
排序方式: 共有2333条查询结果,搜索用时 0 毫秒
61.
Russian Journal of General Chemistry - The Grubbs–Hoveyda catalysts have a wide range of applications in catalyzed formation of the carbon-carbon double bonds. In this study, several...  相似文献   
62.
Recently, Li-ion batteries (LIBs) have attracted extensive attention owing to their wide applications in portable and flexible electronic devices. Such a huge market for LIBs has caused an ever-increasing demand for excellent mechanical flexibility, outstanding cycling life, and electrodes with superior rate capability. Herein, an anode of self-supported Fe3O4@C nanotubes grown on carbon fabric cloth (CFC) is designed rationally and fabricated through an in situ etching and deposition route combined with an annealing process. These carbon-coated nanotube structured Fe3O4 arrays with large surface area and enough void space can not only moderate the volume variation during repeated Li+ insertion/extraction, but also facilitate Li+/electrons transportation and electrolyte penetration. This novel structure endows the Fe3O4@C nanotube arrays stable cycle performance (a large reversible capacity of 900 mA h g−1 up to 100 cycles at 0.5 A g−1) and outstanding rate capability (reversible capacities of 1030, 985, 908, and 755 mA h g−1 at 0.15, 0.3, 0.75, and 1.5 A g−1, respectively). Fe3O4@C nanotube arrays still achieve a capacity of 665 mA h g−1 after 50 cycles at 0.1 A g−1 in Fe3O4@C//LiCoO2 full cells.  相似文献   
63.
The interactions between bovine serum albumin (BSA) and polymer (poly (METAC-co-NIPAm-co-Eu(AA)3Phen), PMNEu) containing rare earth element (Europium) were detailedly investigated by both of experimental techniques, such as fluorescence spectroscopic analysis, zeta-potential characterization, hydrodynamic size measurements and transmission electron microscopy (TEM) observation, and theoretical calculations. As a result, we concluded that PMNEu could interact with BSA through electrostatic force and quench the fluorescence of BSA, which was regarded as the static quenching mechanism. In addition, the binding constant and binding sites number of BSA with PMNEu were calculated, and the distance between PMNEu and BSA was also estimated to be 1.9?nm based on Föster’s theory. Furthermore, the two fluorescence peaks of PMNEu at 594?nm and 618?nm were detected, and the density of them increased with the more BSA being added to couple with PMNEu. Additionally, The zeta-potential results confirmed the electrostatic interaction mode between BSA and PMNEu, which was concluded with the previous thermodynamic analysis. At last, the results from the hydrodynamic size measurement had a good agreement with those from the TEM observation about the structure and size variation during the complexation of PMNEu with different concentrations of BSA.  相似文献   
64.
Nonuniform nucleation is one of the major reasons for the dendric growth of metallic lithium, which leads to intractable problems in the efficiency, reversibility, and safety in Li-based batteries. To improve the deposition of metallic Li on Cu substrates, herein, a freestanding current collector (NGDY@CuNW) is formed by coating pyridinic nitrogen-doped graphdiyne (NGDY) nanofilms on 3D Cu nanowires (CuNWs). Theoretical predictions reveal that the introduction of nitrogen atoms in the 2D GDY can enhance the binding energy between the Li atom and GDY, therefore improving the lithiophilicity on the surface for uniform lithium nucleation and deposition. Accordingly, the deposited metallic Li on the NGDY@CuNW electrode exhibits a dendrite-free morphology, resulting in significant improvements in terms of the reversibility with a high coulombic efficiency (CE) and a long lifespan at high current density. Our research provides an efficient method to control the surface property of Cu, which also will be instructive for other metal batteries.  相似文献   
65.
66.
67.
Polymerizable rare earth complex Eu(AA)3Phen was synthesized by complexion of europium ion, acrylic acid (AA), and 1,10-phenanthroline (Phen). The structure and fluorescence properties of the complex were studied by elemental analysis, 1H-NMR spectroscopy, and fluorescence spectroscopy. Eu-containing copolymer poly(PEGMA-co-MMA-co-METAC-co-Eu(AA)3Phen) (PPMMEu) was then synthesized by free radical copolymerization of Eu(AA)3Phen and other functional monomers including poly(ethylene glycol) methyl ether methacrylate (PEGMA) and [2-(Methacryloyloxy) ethyl] trimethylammonium chloride (METAC). 1H-NMR spectroscopy and fluorescence spectroscopy were used to characterize the copolymer and the interactions between the copolymer and DNA was investigated by TEM, fluorescence spectroscopy, and agarose gel electrophoresis. The desired luminescent cationic copolymer was successfully obtained. The copolymer can form micelles in water solution and can efficiently bind to DNA molecules through electrostatic interaction. The results suggest the potential use of PPMMEu in bioprobes and gene vectors.  相似文献   
68.

Three kinds of photoresponsive copolymers with azobenzene side chains were synthesized by radical polymerization of N‐4‐phenylazophenylacrylamide (PAPA) with N‐isopropylacrylamide (NIPAM), N,N‐diethylacrylamide (DEAM) or N,N‐dimethylacrylamide (DMAM) respectively. Their structures were characterized by FT‐IR, 1H‐NMR and UV/Vis spectroscopy. Their reversible photoresponses were studied with or without α‐cyclodextrin (α‐CD), which showed that both the copolymers and their inclusion complexes with α‐CD underwent rapid photoisomerization. The lower critical solution temperature (LCST) of the copolymers and their inclusion complexes with α‐CD were investigated by cloud point measurement, which showed that the LCST of three kinds of copolymers increased largely after adding α‐CD. After UV irradiation on the solutions of copolymers and their inclusion complexes, the LCST of the copolymers increased slightly with the absence of α‐CD, while decreased largely with the presence of α‐CD. Furthermore, the LCST reverted to its originality after visible light irradiation. This change of LCST could be reversibly controlled by UV and visible light irradiation alternately. In particular, in the copolymer of PAPA and DMAM, the reversible water solubility of the inclusion complexes could be triggered by alternating UV and visible light irradiation.  相似文献   
69.
Li2FeSiO4/C cathode materials have been prepared using the conventional solid-state method by varying the sintering temperature (650 °C, 700 °C and 750 °C), and the structure and electrochemical performance of Li2FeSiO4/C materials are investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), galvanostatic charge–discharge tests, respectively. The results show that Li2FeSiO4 nano-crystals with a diameter of about 6–8 nm are inbedded in the amorphous carbon, and the Li2FeSiO4/C material obtained at 700 °C exhibits an initial discharge capacity of 195 mA?h g?1 at 1/16 C in the potential range of 1.5–4.8 V. The excellent electrochemical performance of Li2FeSiO4/C attributes to the improvement of conductivity and reduction of impurity by the optimization of the sintering temperature.  相似文献   
70.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号