首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3058篇
  免费   345篇
  国内免费   233篇
化学   2294篇
晶体学   27篇
力学   188篇
综合类   9篇
数学   348篇
物理学   770篇
  2024年   11篇
  2023年   109篇
  2022年   159篇
  2021年   150篇
  2020年   195篇
  2019年   203篇
  2018年   184篇
  2017年   133篇
  2016年   198篇
  2015年   195篇
  2014年   217篇
  2013年   274篇
  2012年   321篇
  2011年   299篇
  2010年   186篇
  2009年   159篇
  2008年   157篇
  2007年   139篇
  2006年   97篇
  2005年   55篇
  2004年   38篇
  2003年   22篇
  2002年   26篇
  2001年   10篇
  2000年   23篇
  1999年   11篇
  1998年   16篇
  1997年   5篇
  1996年   6篇
  1995年   5篇
  1994年   1篇
  1993年   5篇
  1992年   2篇
  1991年   6篇
  1990年   8篇
  1989年   2篇
  1988年   2篇
  1987年   1篇
  1986年   1篇
  1985年   2篇
  1983年   1篇
  1982年   2篇
排序方式: 共有3636条查询结果,搜索用时 31 毫秒
101.
建立超高效液相色谱–串联质谱法鉴别十字花科植物中硫代葡萄糖苷的分析方法。采用70%甲醇水溶液提取白芥种子中的硫代葡萄糖苷,通过反相C18柱分离,电喷雾–离子阱–飞行时间质谱测定。利用硫代葡萄糖苷二级质谱裂解产生的m/z 195,241,259,275,291特征离子和伴随产生的80,162,163,196,242 Da中性分子丢失规律,共鉴别出5种硫代葡萄糖苷。  相似文献   
102.
以甲苯为溶剂,正辛基三乙氧基硅烷(OTS)为改性剂,进行了ZSM-5高硅分子筛疏水改性研究。通过傅立叶红外(FT-IR)、X射线粉末衍射(XRD)、N2吸附-解吸附、静态水接触角、水与正己烷的静态吸附,以及水热稳定性试验等测试了改性前后样品结构与性能。结果表明,通过硅烷化改性在ZSM-5上接枝了-Si(CH2)7CH3基团,并实现了超疏水性。当0.8g ZSM-5使用0.24g改性剂时,改性后分子筛的接触角达152°,水吸附量下降了1.49%,比表面积、孔容、孔径分别减小了62.7m2/g、0.0329cm3/g、0.42nm,孔道长程有序性有所降低,且具有较高的水热稳定性。  相似文献   
103.
Rapid and efficient side‐chain functionalization of polypeptide with neighboring carboxylgroups is achieved via the combination of ring‐opening polymerization and subsequent thiol‐yne click chemistry. The spontaneous formation of polymersomes with uniform size is found to occur in aqueous medium via electrostatic interaction between the anionic polypeptide and cationic doxorubicin hydrochloride (DOX·HCl). The polymersomes are taken up by A549 cells via endocytosis, with a slightly lower cytotoxicity compared with free DOX ·HCl. Moreover, the drug‐loaded polymersomes exhibit the enhanced therapeutic efficacy, increase apoptosis in tumor tissues, and reduce systemic toxicity in nude mice bearing A549 lung cancer xenograft, in comparison with free DOX ·HCl.  相似文献   
104.
Graphene-nanosheet-based highly porous magnetite nanocomposites (GN-HPMNs) have been prepared using a simple solvothermal method and used as an immobilization matrix for the fabrication of a solid-state electrochemiluminescence (ECL) sensor on paper-based chips. Highly porous Fe3O4 nanocrystal clusters were coated with acrylate and wrapped tightly on the skeleton of graphene nanosheets. The structures and sizes of the GN-HPMNs could be tuned by varying the proportions of the solvents ethylene glycol and diethylene glycol. Then, the relatively highly porous ones with an average diameter of about 65 nm were combined with Nafion to form composite films on an electrode surface for immobilization of Ru(bpy)3 2+ (bpy is 2,2′-bipyridine). Because of their porosity, negatively charged surface, and cooperative characteristics of magnetic nanomaterials and graphene, under an external magnetic field, the GN-HPMNs ensured effective immobilization, excellent electron transfer, and long-term stability of Ru(bpy)3 2+ in the composite film. The sensor developed exhibited excellent reproducibility with a relative standard deviation of 0.65 % for 30 continuous cycles. It was found to be much more favorable for detecting compounds containing tertiary amino groups and DNAs with guanine and adenine. A detection limit (signal-to-noise ratio of 3) of 5.0 nM was obtained for tripropylamine. As an application example, 0.5 nM single-nucleotide mismatch could be detected. This was the first attempt to introduce magnetic nanomaterials and an external magnetic field into paper-based chips. The sensor developed has the advantages of high sensitivity, good stability, and wide potential applicability as well as simplicity, low cost, and good disposability.
Figure
Schematic diagram of using graphene-nanosheet-based highly porous magnetite nanocomposites for fabrication of a solid-state electrochemiluminescence sensor on paper-based chips and application example of the developed sensor for single-nucleotide mismatch discrimination  相似文献   
105.
106.
This paper presents a method for the simultaneous determination of 48 fragrance allergens in four types of toys (plastic toys, play clays, plush toys, and paper toys) based on GC with ion trap MS/MS. Compared with single‐stage MS, MS/MS is superior in terms of the qualification and quantification of a large range of compounds in complicated matrices. Procedures for extraction and purification were optimized for each toy type. The method proved to be linear over a wide range of concentrations for all analytes with correlation coefficients between 0.9768 and 0.9999. Validation parameters, namely, LODs and LOQs, ranged from 0.005–5.0 and from 0.02–20 mg/kg, respectively. Average recoveries of target compounds (spiked at three concentration levels) were in the range of 79.5–109.1%. Intraday and interday repeatabilities of the proposed method varied from 0.7–10.5% and from 3.1–13.4%, respectively. The proposed method was used to monitor fragrance allergens in commercial toy products. Our findings indicate that this method is an accurate and effective technique for analyzing fragrance allergens in materials composed of complex components.  相似文献   
107.
A novel porous monolith has been prepared and used as a sorbent in stir-cake-sorptive extraction (SCSE). The monolithic material was prepared by in-situ copolymerization of allyl thiourea (AT) and divinylbenzene (DB) in the presence of dimethylformamide as a porogen solvent. To optimize the polymerization conditions, different monoliths with different ratios of functional monomer to porogenic solvent were prepared, and their extraction efficiency was investigated in detail. The monolith was characterized by elemental analysis, scanning electron microscopy, mercury intrusion porosimetry, and infrared spectroscopy. Analysis of polar phenols in environmental water samples by a combination of ATDB-SCSE and HPLC with diode-array detection was selected as a model for the practical application of the new sorbent. Several extraction conditions, including extraction and desorption time, pH, and ionic strength of the sample matrix were optimized. The results showed that the new monolith had high affinity for polar phenols and could be used to extract them effectively. Under the optimum conditions, low detection (S/N?=?3) and quantification (S/N?=?10) limits were achieved for the phenols, within the ranges 0.18–0.90 and 0.59–2.97 μg L?1, respectively. The linearity of the method was good, and the method enabled simple, practical, and low-cost extraction of these analytes. The distribution coefficients between ATDB and water (K ATDB/W) were calculated for the phenolic compounds and compared with K O/W. Finally, the proposed method was successfully applied to the determination of the compounds in three environmental water samples, with acceptable recovery and satisfactory repeatability.
Figure
HPLC chromatograms of real water sample treated with ATDB-SCSE (a) and spiked water sample treated with ATDB-SCSE (b)  相似文献   
108.
109.
We have combined the molecular imprinting and the layer-by-layer assembly techniques to obtain molecularly imprint polymers (MIPs) for the electrochemical determination of p-nitrophenol (p-NPh). Silica microspheres functionalized with thiol groups and gold nanoparticles (Au-NPs) were assembled on a gold electrode surface layer by layer. The electrode was then immersed into a solution of pyrrole and p-NPh (the template), and electropolymerization led to the creation of a polymer-modified surface. After the removal of the silica spheres and the template, electrochemical impedance spectroscopy and differential pulse voltammetry (DPV) were employed to characterize the surface. The results demonstrated the successful fabrication of macroporous MIPs embedded with Au-NPs on the gold electrode. The effects of monomer concentration and scan rate on the performance of the electrode were optimized. Excellent recognition capacity is found for p-NPh over chemically similar species. The DPV peak current is linearly related to concentration of p-NPh in the 0.1 μM to 1.4 mM range, with a 0.1 μM limit of detection (at S/N?=?3).
Figure
Molecularly imprinted polymers (MIPs) and nanomaterials were combined to prepare a novel macroporous structured MIPs based electrochemical sensor for the investigation of an environmental pollutant, p-nitrophenol (p-NPh). The sensor exhibited a fast binding dynamics, good specific adsorption capacities, and high selective recognition to p-NPh.  相似文献   
110.
Zhou  Dan-Ling  Zhang  Qian-Li  Lv  Zhang-Ying  Chen  Wan-Yi  Liu  Xiang-Feng  Lu  Ya-Hui  Wang  Ai-Jun  Feng  Jiu-Ju 《Mikrochimica acta》2013,180(15):1495-1500

We have developed a method for in-situ construction of a porous network-like silver film on the surface of a glassy carbon electrode (GCE). It is based on a galvanic replacement reaction where a layer of copper nanoparticles is first electrodeposited as a sacrificial template. The silver film formed possesses a porous network-like structure and consists of an assembly of numerous nanoparticles with an average size of 200 nm. The electrode displays excellent electrocatalytic activity, good stability, and fast response (within 2 s) toward the reduction of nitrate at a working potential of −0.9 V. The catalytic currents linearly increase with the nitrate concentrations in the range of 0.08–6.52 mM, with a detection limit of 3.5 μM (S/N = 3) and a repeatability of 3.4 % (n = 5).

A facile method was developed for in situ construction of a porous network-like Ag film on a glassy carbon electrode by a galvanic replacement reaction, where a layer of Cu nanoparticles previously electrodeposited as a sacrificial template. Thus-formed Ag film displays excellent electrocatalytic activity, good stability, and fast response (within 2 s) toward nitrate reduction.

  相似文献   
[首页] « 上一页 [6] [7] [8] [9] [10] 11 [12] [13] [14] [15] [16] 下一页 » 末  页»
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号