首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1201篇
  免费   84篇
  国内免费   199篇
化学   976篇
晶体学   11篇
力学   65篇
综合类   19篇
数学   119篇
物理学   294篇
  2023年   17篇
  2022年   39篇
  2021年   42篇
  2020年   34篇
  2019年   41篇
  2018年   38篇
  2017年   50篇
  2016年   51篇
  2015年   69篇
  2014年   56篇
  2013年   96篇
  2012年   93篇
  2011年   94篇
  2010年   75篇
  2009年   89篇
  2008年   79篇
  2007年   85篇
  2006年   84篇
  2005年   75篇
  2004年   38篇
  2003年   28篇
  2002年   24篇
  2001年   21篇
  2000年   27篇
  1999年   39篇
  1998年   25篇
  1997年   22篇
  1996年   15篇
  1995年   15篇
  1994年   4篇
  1993年   6篇
  1992年   3篇
  1991年   2篇
  1990年   3篇
  1989年   2篇
  1988年   2篇
  1959年   1篇
排序方式: 共有1484条查询结果,搜索用时 31 毫秒
131.
A series of novel Mannich base derivatives (E1–E15) of 5‐aryl‐1,3,4‐oxadiazole‐2‐thione with substituted pyrimidine were synthesized and characterized by elemental analysis, IR, 1H‐NMR. The antifungal activities of these compounds were also originally studied. The results showed that most of the title compounds exhibited relatively good fungicidal activities. Especially compounds E8 and E13 showed better antifungal activity than comparison compound hymexazol. The relationship of structure and activity revealed that the presence of the methyl group at four and six positions of pyrimidine ring remarkably enhanced the antifungal activity of title compounds.  相似文献   
132.
Photobiological hydrogen production is of great importance because of its promise for generating clean renewable energy. In nature, green algae cannot produce hydrogen as a result of the extreme sensitivity of hydrogenase to oxygen. However, we find that silicification‐induced green algae aggregates can achieve sustainable photobiological hydrogen production even under natural aerobic conditions. The core–shell structure of the green algae aggregates creates a balance between photosynthetic electron generation and hydrogenase activity, thus allowing the production of hydrogen. This finding provides a viable pathway for the solar‐driven splitting of water into hydrogen and oxygen to develop green energy alternatives by using rationally designed cell–material complexes.  相似文献   
133.
以L-薄荷醇为原料,经3步反应制备得到中间体薄荷基二氯化膦.该中间体首先通过与超声波辐射制备的微米级钠粒反应形成薄荷基膦二钠盐,然后依次经过偶联及氧化反应合成了目标产物(-)-双(薄荷基甲酰基)薄荷基氧化膦(BMMPO),并经过1 H NMR、13 C NMR、31P NMR和元素分析进行了表征.  相似文献   
134.
Separation of Ni2+ from ammonia/ammonium chloride solution using a flat-sheet supported liquid membrane (SLM) impregnated with Acorga M5640 in kerosene was investigated. The fundamental experimental variables influencing Ni2+ transport, such as ammonia concentration, carrier concentration, H2SO4 concentration in the stripping solution, stirring speed, and initial Ni2+ concentration were studied. Almost all of Ni2+ was transported from the feed to the stripping phase after 18 h of operation with a permeability coefficient of 9.28 × 10?6 m s?1 under optimum conditions: stirring speed of 1000 rpm in both phases, 20 vol.% Acorga M5640 as the carrier, 1.70 mmol L?1 Ni2+ in the feed phase and 0.10 mol L?1 H2SO4 in the stripping phase. The flux value of Ni2+ was 15.82 × 10?6 mol m?2 s?1. Additionally, the influences of temperature and ultrasound on flux were examined, and results indicated that higher temperature and ultrasonic assistance improved transport of Ni2+ through the SLM. Selective separation of nickel from cobalt in an ammonia/ammonium chloride solution was also achieved through SLM. The stability of the SLM was examined on a continuous run mode and satisfactory stability of the nickel permeation was observed for 84 h (7 runs).  相似文献   
135.
In this paper, three organic intercalating agents containing cations [hexadecyl trimethyl ammonium bromide (CTAB), poly(acrylamide‐co‐diallyldimethylammonium chloride), and quaternized polyethyleneimine] are used to prepare intercalated montmorillonites (MMT) by ion‐exchange method. Then the modified MMTs are doped with vinylbenzyl chloride and styrene copolymer [poly(vinylbenzyl chloride‐co‐styrene)] for fabricating composite anion‐exchange membranes (AEM). Fourier transform infrared, X‐raydiffraction, thermogravimetric analysis, scanning electron microscopy, and Mastersizer laser particle size analyzer are employed to characterize the structure and morphology of MMTs and AEMs. The successful intercalation of MMTs is approved, and the MMT intercalated by CTAB shows an interlayer distance of 2.31 nm. The properties of the composite membranes including water uptake, mechanical property, and ionic conductivity are investigated. Among all the AEMs, the composite membrane containing MMT sheets with CTAB demonstrates better compositive performances. It presents an ionic conductivity of 2.09 × 10?2 S cm?1 at 80°C and good alkaline solution stability. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
136.
Hexagram-like CoS-MoS2 composites were prepared on indium tin oxide (ITO) conductive glasses via cyclic voltammetry electrodeposition using Co(NO3)2 and (NH4)2MoS2 as precursors and tested for application in hydrogen evolution reaction (HER). The structure of CoS-MoS2 composites was characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), and X-ray photoelectron spectrum (XPS). Electrochemical characterizations indicate that CoS-MoS2 composites exhibit more excellent catalytic activity and stability than MoS2. Compared with pure MoS2, the hexagram-like CoS-MoS2 composites with increased specific surface area improved the density of exposed active sites, and the Co binding S edges in CoS-MoS2 composites promote the number of highly catalytic edge sites and decreased the binding energy △G H. Moreover, the effects of different substrates on the CoS-MoS2 composites were also investigated. Our further understanding of this highly active hydrogen evolution catalyst can facilitate the development of economical electrochemical hydrogen production systems.  相似文献   
137.
Nonaqueous redox-flow batteries are an emerging energy storage technology for grid storage systems, but the development of anolytes has lagged far behind that of catholytes due to the major limitations of the redox species, which exhibit relatively low solubility and inadequate redox potentials. Herein, an aluminum-based deep-eutectic-solvent is investigated as an anolyte for redox-flow batteries. The aluminum-based deep-eutectic solvent demonstrated a significantly enhanced concentration of circa 3.2 m in the anolyte and a relatively low redox potential of 2.2 V vs. Li+/Li. The electrochemical measurements highlight that a reversible volumetric capacity of 145 Ah L−1 and an energy density of 189 Wh L−1 or 165 Wh kg−1 have been achieved when coupled with a I3/I catholyte. The prototype cell has also been extended to the use of a Br2-based catholyte, exhibiting a higher cell voltage with a theoretical energy density of over 200 Wh L−1. The synergy of highly abundant, dendrite-free, multi-electron-reaction aluminum anodes and environmentally benign deep-eutectic-solvent anolytes reveals great potential towards cost-effective, sustainable redox-flow batteries.  相似文献   
138.
139.
In this paper, we extend the generalized weighted geometric and generalized ordered weighted geometric operators to intuitionistic fuzzy environments, that is, we develop a series of generalized intuitionistic fuzzy geometric operators to aggregate input arguments that are expressed by intuitionistic fuzzy values based on Archimedean t-conorm and t-norm. Then some desired properties of these aggregation operators are investigated. The relations between these operators and some existing intuitionistic fuzzy geometric aggregation operators are discussed in detail. Furthermore, applying these proposed operators, we develop an approach for multi-criteria decision making with intuitionistic fuzzy information. Finally, a practical example is given to verify the developed approach and to demonstrate its practicality and effectiveness.  相似文献   
140.
The cross-linked chitosan (CS) gels synthesized by using glutaraldehyde (GLA), epichlorohydrin (EC), and ethylene glycol diglycidyl ether (EGDE) as cross-linkers respectively were used to investigate the adsorption of U(VI) ions in an aqueous solution. The pure chitosan (PCS) and the cross-linked chitosan gels were characterized by FTIR and SEM analysis. The kinetic, thermodynamic adsorption and adsorption isotherms of U(VI) ions onto unmodified and modified cross-linked chitosan were studied in a batch adsorption experiments. The effect of pH, contact time and temperature on the adsorption capacity were also carried out. At the optimum pH, the maximum adsorbed amount of PCS, GLACS, ECCS and EGDECS were 483.05, 147.05, 344.83 and 67.56 mg/g, respectively. The uranium (VI) adsorption process of PCS and ECCS followed better with pseudo-second-order kinetic model, while GLACS and EGDECS followed pseudo-first-order kinetic model well. The results obtained from the equilibrium isotherms adsorption studied of U(VI) ions were analyzed in two adsorption models, namely, Langmuir and Freundlich isothms models, the results showed that the Langmuir isotherm had better conformity to the equilibrium data. The thermodynamic parameters such as enthalpy (ΔHo), entropy (ΔSo), and Gibbs free energy (ΔGo) showed that the adsorption process was both spontaneous and endothermic.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号