首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   16803篇
  免费   2799篇
  国内免费   2355篇
化学   12103篇
晶体学   186篇
力学   991篇
综合类   183篇
数学   2063篇
物理学   6431篇
  2024年   45篇
  2023年   335篇
  2022年   608篇
  2021年   692篇
  2020年   707篇
  2019年   774篇
  2018年   601篇
  2017年   578篇
  2016年   831篇
  2015年   882篇
  2014年   1038篇
  2013年   1250篇
  2012年   1507篇
  2011年   1514篇
  2010年   1073篇
  2009年   1084篇
  2008年   1097篇
  2007年   937篇
  2006年   891篇
  2005年   738篇
  2004年   603篇
  2003年   475篇
  2002年   545篇
  2001年   405篇
  2000年   338篇
  1999年   367篇
  1998年   293篇
  1997年   255篇
  1996年   245篇
  1995年   191篇
  1994年   157篇
  1993年   168篇
  1992年   113篇
  1991年   109篇
  1990年   88篇
  1989年   85篇
  1988年   76篇
  1987年   44篇
  1986年   40篇
  1985年   48篇
  1984年   28篇
  1983年   19篇
  1982年   24篇
  1981年   11篇
  1979年   7篇
  1978年   6篇
  1977年   5篇
  1976年   4篇
  1973年   3篇
  1972年   4篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
981.
In this paper, mesoporous tungsten titanate (WTiO) with different nano-pore structures was utilized as matrix for the analysis of short peptides by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOFMS). Effect of characteristic features of mesoporous matrices on laser desorption/ionization process was investigated. Experiments showed that the ordered two-dimensional and three-dimensional mesoporous matrices were superior in performance to the non-ordered WTiO matrix. The dramatic enhancement of signal sensitivity by the ordered mesoporous matrices can be reasonably attributed to the ordered structure, which facilitated the understanding on structure-function relationship in mesoporous cavity for laser desorption process of adsorbed biomolecules. With the ordered mesoporous matrix, the short peptides are successfully detected. The presence of trace alkali metal salt effectively increased the analyte ion yields and the MALDI-TOFMS using the inorganic mesoporous matrices displayed a high salt tolerance. The developed technique also showed a satisfactory performance in peptide-mapping and amino-acid sequencing analysis.  相似文献   
982.
Ten international laboratories participated in an inter-laboratory comparison of a fossil bone composite with the objective of producing a matrix and structure-matched reference material for studies of the bio-mineralization of ancient fossil bone. We report the major and trace element compositions of the fossil bone composite, using in-situ method as well as various wet chemical digestion techniques.For major element concentrations, the intra-laboratory analytical precision (%RSDr) ranges from 7 to 18%, with higher percentages for Ti and K. The %RSDr are smaller than the inter-laboratory analytical precision (%RSDR; <15-30%). Trace element concentrations vary by ∼5 orders of magnitude (0.1 mg kg−1 for Th to 10,000 mg kg−1 for Ba). The intra-laboratory analytical precision %RSDr varies between 8 and 45%. The reproducibility values (%RSDR) range from 13 to <50%, although extreme value >100% was found for the high field strength elements (Hf, Th, Zr, Nb). The rare earth element (REE) concentrations, which vary over 3 orders of magnitude, have %RSDr and %RSDR values at 8-15% and 20-32%, respectively. However, the REE patterns (which are very important for paleo-environmental, taphonomic and paleo-oceanographic analyses) are much more consistent.These data suggest that the complex and unpredictable nature of the mineralogical and chemical composition of fossil bone makes it difficult to set-up and calibrate analytical instruments using conventional standards, and may result in non-spectral matrix effects. We propose an analytical protocol that can be employed in future inter-laboratory studies to produce a certified fossil bone geochemical standard.  相似文献   
983.
A novel method for the determination of peroxynitrite using folic acid as a fluorescent probe is described. The method is based on the oxidation of the reduced, low-fluorescent folic acid by peroxynitrite to produce a high-fluorescent emission product. The fluorescence increase is linearly related to the concentration of peroxynitrite in the range of 3 × 10−8 to 5.0 × 10−6 mol L−1 with a correlation coefficient of 0.998, and the detection limit is 1 × 10−8 mol L−1. Interferences from some metal ions normally seen in biological samples, and also some anions structurally similar to peroxynitrite were studied. The optimal conditions for the detection of peroxynitrite were evaluated.  相似文献   
984.
The discovery that gold catalysts could be active for CO oxidation at cryogenic temperatures has ignited much excitement in nanocatalysis. Whether the alternative Pt group metal (PGM) catalysts can exhibit such high performance is an interesting research issue. So far, no PGM catalyst shows activity for CO oxidation at cryogenic temperatures. In this work, we report a sub‐nano Rh/TiO2 catalyst that can completely convert CO at 223 K. This catalyst exhibits at least three orders of magnitude higher turnover frequency (TOF) than the best Rh‐based catalysts and comparable to the well‐known Au/TiO2 for CO oxidation. The specific size range of 0.4–0.8 nm Rh clusters is critical to the facile activation of O2 over the Rh–TiO2 interface in a form of Rh?O?O?Ti (superoxide). This superoxide is ready to react with the CO adsorbed on TiO2 sites at cryogenic temperatures.  相似文献   
985.
A new iron‐facilitated silver‐mediated radical 1,2‐alkylarylation of styrenes with α‐carbonyl alkyl bromides and indoles is described, and two new C?C bonds were generated in a single step through a sequence of intermolecular C(sp3)?Br functionalization and C(sp2)?H functionalization across the alkenes. This method provides an efficient access to alkylated indoles with broad substrate scope and excellent selectivity.  相似文献   
986.
Two‐dimensional (2D) transition‐metal dichalcogenides (TMDs) have drawn much attention due to their unique physical and chemical properties. Using TMDs as templates for the generation of 2D sandwich‐like materials with remarkable properties still remains a great challenge due to their poor solvent processability. Herein, MoS2‐coupled sandwich‐like conjugated microporous polymers (M‐CMPs) with high specific surface area were successfully developed by using functionalized MoS2 nanosheets as template. As‐prepared M‐CMPs were further used as precursors for preparation of MoS2‐embedded nitrogen‐doped porous carbon nanosheets, which were revealed as novel electrocatalysts for oxygen reduction reaction with mainly four‐electron transfer mechanism and ultralow half‐wave potential in comparison with commercial Pt/C catalyst. Our strategy to core–shelled sandwich‐like hybrids paves a way for a new class of 2D hybrids for energy conversion and storage.  相似文献   
987.
988.
We report here our results on the investigation of the chain dynamics of poly(acrylic acid) in aqueous solution. The concentration of poly(acrylic acid) was approximately 3.8×10~(-4) mol/L, two orders of magnitude higher than that reported in the literature. The p H value of the solution was 3.9, and the hydrogen bonds between the intrinsic and ionized carboxylic acid groups formed dynamic networks, which captured aggregation-induced emission-active molecules(a tetra-quaternary ammonium modified tetraphenylethene derivative) inside the polymer coils and induced fluorescence emission. The hydrogen bonds can be classified as intra- or intermolecular; both can be probed based on the emission change of the tetra-quaternary ammonium modified tetraphenylethene probes. The effects of different external stimuli on the polymer chain dynamics were investigated using different metal cations(including Na~+, Li~+, Zn~(2+), Ni~(2+), Ca~(2+), and Co~(2+)), different cation concentrations(1×10~(-6) to 4×10~(-4) mol/L), different poly(acrylic acid) molecular weights(5, 240, and 450 k Da), and different copolymers. The experimental results indicate that the long poly(acrylic acid) chains(high molecular weight) tend to form dense globular coils and exclude the probe molecules outside, which are robust and unsusceptible to water-soluble metal cations. However, the shorter poly(acrylic acid) chains tend to form intermolecular hydrogen bonds, which are helpful in capturing more probe molecules inside the networks, thus inducing stronger emission. Because of the dual functions of forming hydrogen bonds with carboxylic groups and acting as an acceptor of protons from the carboxylic acid group to form cationic species, copolymerization with acrylate amide [poly(acrylic acid)-co-poly(acrylamide)] can greatly affect the chain dynamics of poly(acrylic acid) segments, which is reflected by the drastically decreased emission intensity from the fluorescent probes.  相似文献   
989.
Cellulose-based nanocomposite aerogels were prepared by incorporation of aluminum hydroxide (AH) nanoparticles into cellulose gels via in-situ sol-gel synthesis and following supercritical CO2 drying. The structure and properties of cellulose/AH nanocomposite aerogels were investigated by Fourier transform infrared spectroscopy, scanning electron microscopy, ultraviolet-visible spectrometry, N2 adsorption, thermogravimetric analysis, and micro-scale combustion calorimetry. The results indicated that the AH nanoparticles were homogeneously distributed within matrix, and the presence of AH nanoparticles did not affect the homogeneous nanoporous structure and morphology of regenerated cellulose aerogels prepared from 1-allyl-3-methylimidazolium chloride solution. The resultant nanocomposite aerogels exhibited good transparency and excellent mechanical properties. Moreover, the incorporation of AH was found to significantly decrease the flammability of cellulose aerogels. Therefore, this work provides a facile method to prepare transparent and flame retardant cellulose-based nanocomposite aerogels, which may have great potential in the application of building materials.  相似文献   
990.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号