首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8479篇
  免费   1324篇
  国内免费   795篇
化学   5943篇
晶体学   154篇
力学   507篇
综合类   75篇
数学   825篇
物理学   3094篇
  2024年   24篇
  2023年   191篇
  2022年   242篇
  2021年   285篇
  2020年   400篇
  2019年   370篇
  2018年   313篇
  2017年   263篇
  2016年   434篇
  2015年   415篇
  2014年   546篇
  2013年   609篇
  2012年   700篇
  2011年   756篇
  2010年   496篇
  2009年   416篇
  2008年   518篇
  2007年   460篇
  2006年   403篇
  2005年   342篇
  2004年   228篇
  2003年   228篇
  2002年   175篇
  2001年   133篇
  2000年   163篇
  1999年   164篇
  1998年   135篇
  1997年   141篇
  1996年   156篇
  1995年   118篇
  1994年   112篇
  1993年   98篇
  1992年   81篇
  1991年   70篇
  1990年   74篇
  1989年   47篇
  1988年   50篇
  1987年   37篇
  1986年   37篇
  1985年   26篇
  1984年   22篇
  1983年   15篇
  1982年   19篇
  1981年   15篇
  1980年   11篇
  1979年   7篇
  1975年   5篇
  1974年   5篇
  1970年   12篇
  1937年   5篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
41.
This paper presents our recent simulation results and novel designs of single mode large cross-section glass-based waveguides for photonic integrated circuits (PICs). Simulations were performed using an in-house Finite Difference (FD) based mode solver and the FD Beam propagation Method (FD-BPM). Our simulation results show that this innovative technology could provide a simplified means to couple optical energy efficiently between optical components in a single chip. This would provide the base for the future large-scale integration of optical components in PICs. The novel idea of using single mode large cross-section glass-based waveguides as an optical integration platform is an evolutionary innovative solution for the monolithic integration of optical components, in which the glass-based structures act both as waveguides and as an optical bench for integration. This allows easy and efficient optical coupling between optical components and optical fibres, removing costly and tedious alignment problems and considerably reducing optical coupling losses in PICs. We expect that the glass-based waveguide PICs technology will enable the emergence of a new generation of compact, reliable, high speed, and multifunctional devices.  相似文献   
42.
Fe-doped TiO2 powder was prepared by high-energy ball milling, using TiO2 Degussa P-25 and α-Fe powders as the starting materials. The structure and magnetic properties of the Fe-doped TiO2 powder were studied by X-ray diffraction, 57Fe Mossbauer spectroscopy and vibrating sample magnetometer. The Reitveld refinement of XRD revealed that ball milling not only triggered incorporation of Fe in TiO2 lattice but also induced the phase transformation from anatase to rutile in TiO2 and consequently the milled Fe-doped TiO2 powder contained only rutile.57Fe Mössbauer effect measure showed that Fe atoms existed in Fe2+ and Fe3+ state, which were assigned to the solid solution FexTi1−xO2. The magnetization measurements indicated that the milled Fe-doped TiO2 powder was ferromagnetic above room temperature. The ferromagnetism in our milled Fe-doped TiO2 powder seemingly does not come from Fe and iron oxides particles/clusters but from the Fe-doped TiO2 powder matrices.  相似文献   
43.
The tunneling of a giant spin at excited levels is studied theoretically in mesoscopic magnets with a magnetic field at an arbitrary angle in the easy plane. Different structures of the tunneling barriers can be generated by the magnetocrystalline anisotropy, the magnitude and the orientation of the field. By calculating the nonvacuum instanton solution explicitly, we obtain the tunnel splittings and the tunneling rates for different angle ranges of the external magnetic field ( θ H = π/2 and π/2 < θ H < π). The temperature dependences of the decay rates are clearly shown for each case. It is found that the tunneling rate and the crossover temperature depend on the orientation of the external magnetic field. This feature can be tested with the use of existing experimental techniques. Received 12 March 2001 and Received in final form 18 October 2001  相似文献   
44.
赵纯  张勤远  潘跃晓  姜中宏 《中国物理》2006,15(9):2158-2164
Er3+-doped tellurite glasses with molar compositions of xNb2O5-(14.7-x)Na2O--10ZnO--5K2O--10GeO2-- 60TeO2--0.3Er2O3 (x=0, 3, 5, 7 and 9) have been investigated for developing 1.5~μm fibre and planar amplifiers. The effects of Nb2O5 on the thermal stability and optical properties of Er3+-doped tellurite glasses have been discussed. It is noted that the incorporation of Nb2O5 (x=5) increases the thermal stability of tellurite glasses significantly. Er3+-doped niobium tellurite glasses exhibit a large stimulated emission cross-section (7.2\times 10-21- 10.7×10-21~cm2 and the gain bandwidth, FWHM×\sigmae^{\rm peak} (274\times 10-28 - 480×10-28~cm3), which are significantly higher than that of silicate and phosphate glasses. In addition, the intensity of upconversion luminescence of the Er3+-doped niobium tellurite glasses decreases rapidly with increasing Nb2O5 content. As a result, Er3+-doped niobium tellurite glasses might be a potential candidate for developing laser or optical amplifier devices.  相似文献   
45.
Let A and B be two finite subsets of a field . In this paper, we provide a non-trivial lower bound for {a+b:aA, bB, and P(a,b)≠0} where P(x,y) [x,y].  相似文献   
46.
采用低压金属有机化合物气相沉积法(LP-MOCVD)生长并制作了1.6—1.7μm大应变InGaAs/InGaAsP分布反馈激光器.采用应变缓冲层技术,得到质量良好的大应变InGaAs/InP体材料.器件采用了4个大应变的量子阱,加入了载流子阻挡层改善器件的温度特性.1.66μm和1.74μm未镀膜的3μm脊型波导器件阈值电流低(小于15mA),输出功率高(100mA时大于14mW).从10—40℃,1.74μm激光器的特征温度T0=57K,和1.55μm InGaAsP分布反馈激光器的特征温度相当. 关键词: MOCVD InGaAs/InGaAsP 应变量子阱 分布反馈激光器  相似文献   
47.
In this paper, we give a new genus-3 topological recursion relation for Gromov-Witten invariants of compact symplectic manifolds. This formula also applies to intersection numbers on moduli spaces of spin curves. A by-product of the proof of this formula is a new relation in the tautological ring of the moduli space of 1-pointed genus-3 stable curves. Research of the first author was partially supported by NSF grant DMS-0204824 Research of the second author was partially supported by NSF grant DMS-0505835  相似文献   
48.
北京自由电子激光(BFEL)装置于1993年底在10.68μm处实现了饱和振荡.输出激光能量为3mJ,饱和平顶宽度2μs.对应饱和振荡平均功率为210kW(宏脉冲),峰值功率约为20MW,比自发辐射高8个量级,单程小讯号净增益为24%,转换效率为0.45%,与理论预期结果相符.光束质量接近衍射极限.目前装置可工作于9-11μm.  相似文献   
49.
The study of Wiener-Levinson digital filters leads to certain classes of polynomials orthogonal on the unit circle (Szeg polynomials). Here we present theorems that show that the unknown frequencies in a periodic discrete time signal can be determined from the limiting behavior (as N → ∞) of the zeros of fixed degree Szeg polynomials that are orthogonal with respect to a distribution defined from N successive samples of the signal. This proves an essential part of a conjecture due to Jones, Njåstad, and Saff concerning the frequency analysis problem.  相似文献   
50.
In this paper, a projection method is presented for solving the flow problems in domains with moving boundaries. In order to track the movement of the domain boundaries, arbitrary‐Lagrangian–Eulerian (ALE) co‐ordinates are used. The unsteady incompressible Navier–Stokes equations on the ALE co‐ordinates are solved by using a projection method developed in this paper. This projection method is based on the Bell's Godunov‐projection method. However, substantial changes are made so that this algorithm is capable of solving the ALE form of incompressible Navier–Stokes equations. Multi‐block structured grids are used to discretize the flow domains. The grid velocity is not explicitly computed; instead the volume change is used to account for the effect of grid movement. A new method is also proposed to compute the freestream capturing metrics so that the geometric conservation law (GCL) can be satisfied exactly in this algorithm. This projection method is also parallelized so that the state of the art high performance computers can be used to match the computation cost associated with the moving grid calculations. Several test cases are solved to verify the performance of this moving‐grid projection method. Copyright © 2004 John Wiley Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号