首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   31133篇
  免费   5585篇
  国内免费   3277篇
化学   21993篇
晶体学   354篇
力学   1817篇
综合类   141篇
数学   2996篇
物理学   12694篇
  2024年   135篇
  2023年   693篇
  2022年   1205篇
  2021年   1349篇
  2020年   1396篇
  2019年   1379篇
  2018年   1169篇
  2017年   1055篇
  2016年   1596篇
  2015年   1524篇
  2014年   1961篇
  2013年   2402篇
  2012年   2868篇
  2011年   2876篇
  2010年   1882篇
  2009年   1793篇
  2008年   1999篇
  2007年   1742篇
  2006年   1631篇
  2005年   1286篇
  2004年   977篇
  2003年   767篇
  2002年   756篇
  2001年   590篇
  2000年   468篇
  1999年   594篇
  1998年   511篇
  1997年   498篇
  1996年   491篇
  1995年   426篇
  1994年   342篇
  1993年   281篇
  1992年   279篇
  1991年   224篇
  1990年   202篇
  1989年   151篇
  1988年   92篇
  1987年   79篇
  1986年   104篇
  1985年   73篇
  1984年   37篇
  1983年   44篇
  1982年   28篇
  1981年   22篇
  1980年   7篇
  1979年   4篇
  1976年   1篇
  1975年   1篇
  1957年   4篇
  1923年   1篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
Hot carrier (HC) cooling accounts for the significant energy loss in lead halide perovskite (LHP) solar cells. Here, we study HC relaxation dynamics in Mn-doped LHP CsPbI3 nanocrystals (NCs), combining transient absorption spectroscopy and density functional theory (DFT) calculations. We demonstrate that Mn2+ doping (1) enlarges the longitudinal optical (LO)–acoustic phonon bandgap, (2) enhances the electron–LO phonon coupling strength, and (3) adds HC relaxation pathways via Mn orbitals within the bands. The spectroscopic study shows that the HC cooling process is decelerated after doping under band-edge excitation due to the dominant phonon bandgap enlargement. When the excitation photon energy is larger than the optical bandgap and the Mn2+ transition gap, the doping accelerates the cooling rate owing to the dominant effect of enhanced carrier–phonon coupling and relaxation pathways. We demonstrate that such a phenomenon is optimal for the application of hot carrier solar cells. The enhanced electron–LO phonon coupling and accelerated cooling of high-temperature hot carriers efficiently establish a high-temperature thermal quasi-equilibrium where the excessive energy of the hot carriers is transferred to heat the cold carriers. On the other hand, the enlarged phononic band-gap prevents further cooling of such a quasi-equilibrium, which facilitates the energy conversion process. Our results manifest a straightforward methodology to optimize the HC dynamics for hot carrier solar cells by element doping.

Mn doping modulates the hot carrier dynamics in all-inorganic lead halide perovskite nanocrystals according to the excitation energy.  相似文献   
992.
In this paper,we introduce a new deep learning framework for discovering the phase-field models from existing image data.The new framework embraces the approxim...  相似文献   
993.
β-cyclodextrin has a unique annular hollow ultrastructure that allows encapsulation of various poorly water-soluble drugs in the resulting cavity, thereby increasing drug stability. As a bioactive molecule, the metabolism of β-cyclodextrin is mainly completed by the flora in the colon, which can interact with API. In this study, understanding the in vivo fate of β-cyclodextrin, a LC-MS/MS method was developed to facilitate simultaneous quantitative analysis of pharmaceutical excipient β-cyclodextrin and API dextromethorphan hydrobromide. The established method had been effectively used to study the pharmacokinetics, tissue distribution, excretion, and metabolism of β-cyclodextrin after oral administration in rats. Results showed that β-cyclodextrin was almost wholly removed from rat plasma within 36 h, and high concentrations of β-cyclodextrin distributed hastily to organs with increased blood flow velocities such as the spleen, liver, and kidney after administration. The excretion of intact β-cyclodextrin to urine and feces was lower than the administration dose. It can be speculated that β-cyclodextrin metabolized to maltodextrin, which was further metabolized, absorbed, and eventually discharged in the form of CO2 and H2O. Results proved that β-cyclodextrin, with relative low accumulation in the body, had good safety. The results will assist further study of the design and safety evaluation of adjuvant β-cyclodextrin and promote its clinical development.  相似文献   
994.
It is important to inhibit oxidative stress to maintain sperm motility during cryopreservation. The present study was performed to investigate the effects of supplementing oligomeric proanthocyanidins (OPC) and bamboo leaf flavonoids (BLF) or their combination as an extender for Simmental bull semen freezing. OPC, BLF, or their combination were added to the frozen diluent of bovine semen. Afterwards, computer-assisted semen analysis (CASA), detection of membrane functionality, acrosome integrity, mitochondrial integrity, CAT, SOD, GSH-PX, MDA, and ROS were conducted. The results showed that adding 50 mg/L OPC or 4 mg/L BLF could improve the quality of frozen sperm. Compared with 50 mg/L OPC alone, the combination of 50mg/L OPC and 2 mg/L BLF significantly increased the kinematic parameters of sperm, and sperm CAT, GSH-PX and SOD levels (p < 0.05), whereas the MDA of sperm was decreased (p < 0.05). These results indicated that compared to the addition of 50 mg/L OPC alone, a combination of 50 mg/L OPC and 2 mg/L BLF could further improve the quality of frozen semen. The results could provide theoretical data support for the development of a new protective agent and are significant for the cryopreservation of bovine semen in the future.  相似文献   
995.
A family of novel efficient non-oxime compounds exhibited promising reactivation efficacy for VX and sarin inhibited human acetylcholinesterase was discovered. It was found that aromatic groups coupled to Mannich phenols and the introduction of imidazole to the ortho position of phenols would dramatically enhance reactivation efficiency. Moreover, the in vivo experiment was conducted, and the results demonstrated that Mannich phenol L10R1 (30 mg/kg, ip) could afford 100% 48 h survival for mice of 2*LD50 sarin exposure, which is promising for the development of non-oxime reactivators with central efficiency.  相似文献   
996.
碳化硅功率MOSFET是宽禁带功率半导体器件的典型代表,具有优异的电气性能。基于低温环境下的应用需求,研究了1200 V碳化硅功率MOSFET在77.7 K至300 K温区的静/动态特性,定性分析了温度对碳化硅功率MOSFET性能的影响。实验结果显示,温度从300 K降低至77.7 K时,阈值电压上升177.24%,漏-源极击穿电压降低32.99%,栅极泄漏电流降低82.51%,导通电阻升高1142.28%,零栅压漏电流降低89.84%(300 K至125 K)。双脉冲测试显示,开通时间增大8.59%,关断时间降低16.86%,开关损耗增加48%。分析发现,碳化硅功率MOSFET较高的界面态密度和较差的沟道迁移率,是导致其在低温下性能劣化的主要原因。  相似文献   
997.
This paper addresses the tasks of height and posture motion control for an electronically controlled active air suspension (AAS) system. A mathematical model of a vehicle body with AAS system is established to describe the dynamic characteristics and then formulated into a multi-input multi-output nonlinear system by considering parametric uncertainties and unmodelled dynamics. Based on this mathematical model, a synchronization control strategy is proposed to adjust the heights of adjacent AASs simultaneously, driving the pitch and roll angles closely to an arbitrarily neighborhood of zero, achieving global uniform ultimate boundedness. The proposed controller is robust to parametric uncertainties and external disturbances. A projection operator is utilized to limit the estimated parameters to their corresponding prescribed bounds in finite time. A co-simulation is conducted by combining a virtual vehicle plant with ASS system in AMEsim with the proposed synchronization controller in MATLAB/Simulink. Simulation results demonstrate that the proposed synchronization controller is effective and robust.  相似文献   
998.
New thermoelectric materials, n-type Bi6Cu2Se4O6 oxyselenides, composed of well-known BiCuSeO and Bi2O2Se oxyselenides, are synthesized with a simple solid-state reaction. Electrical transport properties, microstructures, and elastic properties are investigated with an emphasis on thermal transport properties. Similar to Bi2O2Se, it is found that the halogen-doped Bi6Cu2Se4O6 possesses n-type conducting transports, which can be improved via Br/Cl doping. Compared with BiCuSeO and Bi2O2Se, an extremely low thermal conductivity can be observed in Bi6Cu2Se4O6. To reveal the origin of low thermal conductivity, elastic properties, sound velocity, Grüneisen parameter, and Debye temperature are evaluated. Importantly, the calculated phonon mean free path of Bi6Cu2Se4O6 is comparable to the interlayer distance for BiO─CuSe and BiO─Se layers, which is ascribed to the strong interlayer phonon scattering. Contributing from the outstanding low thermal conductivity and improved electrical transport properties, the maximum ZT ≈0.15 at 823 K and ≈0.11 at 873K are realized in n-type Bi6Cu2Se3.2Br0.8O6 and Bi6Cu2Se3.6Cl0.4O6, respectively, indicating the promising thermoelectric performance in n-type Bi6Cu2Se4O6 oxyselenides.  相似文献   
999.
ABSTRACT

The stable configurations, electronic structures and catalytic activities of single-atom metal catalyst anchored silicon-doped graphene sheets (3Si-graphene-M, M?=?Ni and Pd) are investigated by using density functional theory calculations. Firstly, the adsorption stability and electronic property of different gas reactants (O2, CO, 2CO, CO/O2) on 3Si-graphene-M substrates are comparably analysed. It is found that the coadsorption of O2/CO or 2CO molecules is more stable than that of the isolated O2 or CO molecule. Meanwhile, the adsorbed species on 3Si-graphene-Ni sheet are more stable than those on the 3Si-graphene-Pd sheet. Secondly, the possible CO oxidation reactions on the 3Si-graphene-M are investigated through Eley–Rideal (ER), Langmuir–Hinshelwood (LH) and new termolecular Eley–Rideal (TER) mechanisms. Compared with the LH and TER mechanisms, the interaction between 2CO and O2 molecules (O2?+?CO → CO3, CO3?+?CO → 2CO2) through ER reactions (< 0.2?eV) are an energetically more favourable. These results provide important reference for understanding the catalytic mechanism for CO oxidation on graphene-based catalyst.  相似文献   
1000.
The Ammosov–Delone–Krainov (ADK) and Perelomov–Popov–Terent’ev (PPT) ionization models were widely used in strong-field physics and attosecond science due to their many attractive advantages such as simpler analytical formula, less computational demands, and satisfied accuracy of ionization rate. Based on the density-functional theory, we systematically determine accurate structure parameters of 25 atoms, 24 positive ions and 13 negative ions and tabulate for future applications. The wave function with correct asymptotic behavior is obtained by solving the time-independent Schrödinger equation with B-spline basis sets and the accurate structure parameters are extracted from this wave function in the asymptotic region. The accuracies of structure parameters are carefully examined by comparing the ionization probabilities (or yields) calculated by PPT and ADK models with those of solving the three-dimensional time-dependent Schrödinger equation and the experimental data.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号