首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   23258篇
  免费   1893篇
  国内免费   1928篇
化学   14398篇
晶体学   225篇
力学   1257篇
综合类   131篇
数学   2741篇
物理学   8327篇
  2025年   41篇
  2024年   285篇
  2023年   538篇
  2022年   739篇
  2021年   880篇
  2020年   1091篇
  2019年   1012篇
  2018年   733篇
  2017年   702篇
  2016年   1036篇
  2015年   1008篇
  2014年   1162篇
  2013年   1528篇
  2012年   1716篇
  2011年   1794篇
  2010年   1257篇
  2009年   1131篇
  2008年   1289篇
  2007年   1131篇
  2006年   1000篇
  2005年   916篇
  2004年   736篇
  2003年   630篇
  2002年   694篇
  2001年   553篇
  2000年   450篇
  1999年   435篇
  1998年   345篇
  1997年   313篇
  1996年   332篇
  1995年   298篇
  1994年   233篇
  1993年   167篇
  1992年   168篇
  1991年   161篇
  1990年   131篇
  1989年   100篇
  1988年   56篇
  1987年   58篇
  1986年   72篇
  1985年   50篇
  1984年   31篇
  1983年   28篇
  1982年   17篇
  1981年   11篇
  1980年   7篇
  1979年   3篇
  1975年   2篇
  1964年   1篇
  1957年   4篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
141.
Under investigation in this paper is a sextic nonlinear Schrödinger equation, which describes the pulses propagating along an optical fiber. Based on the symbolic computation, Lax pair and infinitely-many conservation laws are derived. Via the modiied Hirota method, bilinear forms and multi-soliton solutions are obtained. Propagation and interactions of the solitons are illustrated graphically: Initial position and velocity of the soliton are related to the coefficient of the sixth-order dispersion, while the amplitude of the soliton is not affected by it. Head-on, overtaking and oscillating interactions between the two solitons are displayed. Through the asymptotic analysis, interaction between the two solitons is proved to be elastic. Based on the linear stability analysis, the modulation instability condition for the soliton solutions is obtained.  相似文献   
142.
Two-dimensional (2D) materials with robust ferromagnetism have played a key role in realizing nextgeneration spin-electronic devices, but many challenges remain, especially the lack of intrinsic ferromagnetic behavior in almost all 2D materials. Here, we highlight ultrathin Mn3O4 nanosheets as a new 2D ferromagnetic material with strong magnetocrystalline anisotropy. Magnetic measurements along the in-plane and out-of-plane directions confirm that the out-of-plane direction is the easy axis. The 2D-confined environment and Rashba-type spin-orbit coupling are thought to be responsible for the magnetocrystalline anisotropy. The robust ferromagnetism in 2D Mn3O4 nanosheets with magnetocrystalline anisotropy not only paves a new way for realizing the intrinsic ferromagnetic behavior in 2D materials but also provides a novel candidate for building next-generation spin-electronic devices.  相似文献   
143.
Motivated by the revealing features of the continuous-variable (CV) quantum cryptography, we suggest an arbitrated quantum signature (AQS) protocol with CV coherent states. It involves three participants, i.e., the signer Alice, the verifier Bob and the arbitrator Charlie who is trustworthy by Alice and Bob. Three phases initializing phase, signing phase and verifying phase are included in our protocol. The security of the signature scheme is guaranteed by the generation of the shared keys via the CV-based quantum key distribution (CV-QKD) and the implementation process of the CV-based quantum teleportation as well. Security analysis demonstrates that the signature can be neither forged by anyone nor disavowed by the receiver and signer. Moreover, the authenticity and integrality of the transmitted messages can be ensured. The paper shows that a potential high-speed quantum signature scheme with high detection efficiency and repetition rate can be realized when compared to the discrete-variable (DV) quantum signature scheme attributing to the well characteristics of CV-QKD.  相似文献   
144.
A two-way satellite time and frequency transfer(TWSTFT) device equipped in the BeiDou navigation satellite system(BDS)can calculate clock error between satellite and ground master clock. TWSTFT is a real-time method with high accuracy because most system errors such as orbital error, station position error, and tropospheric and ionospheric delay error can be eliminated by calculating the two-way pseudorange difference. Another method, the multi-satellite precision orbit determination(MPOD)method, can be applied to estimate satellite clock errors. By comparison with MPOD clock estimations, this paper discusses the applications of the BDS TWSTFT clock observations in satellite clock measurement, satellite clock prediction, navigation system time monitor, and satellite clock performance assessment in orbit. The results show that with TWSTFT clock observations, the accuracy of satellite clock prediction is higher than MPOD. Five continuous weeks of comparisons with three international GNSS Service(IGS) analysis centers(ACs) show that the reference time difference between BeiDou time(BDT) and golbal positoning system(GPS) time(GPST) realized IGS ACs is in the tens of nanoseconds. Applying the TWSTFT clock error observations may obtain more accurate satellite clock performance evaluation in the 104 s interval because the accuracy of the MPOD clock estimation is not sufficiently high. By comparing the BDS and GPS satellite clock performance, we found that the BDS clock stability at the 103 s interval is approximately 10.12, which is similar to the GPS IIR.  相似文献   
145.
The SnO2 nano-flower/graphene (SnO2-NF/GN) composites were synthesized by using graphene (GN) and SnO2 nano-flower (SnO2-NF). Among them, the SnO2-NFs were prefabricated by using sodium hydroxide and stannic chloride pentahydrate (SnCl4·5H2O) as raw materials. The results of SEM show that the SnO2-NFs are uniformly dispersed on the surface of GN. Furthermore, compared with the pure SnO2, the as-prepared SnO2-NF/GN composites displayed superior cycle performace and high rate capability. The SnO2-NF/GN composite delivers a specific capacity of 650 mAh g?1 after 60 cycles and an excellent rate capability of 480 mAh g?1 at 2000 mA g?1.  相似文献   
146.
We solve analytically the Schrödinger equation taking into account the shape changes of GaInAs/GaAs quantum wells due to indium segregation during the MBE growth by using transfer matrix method. The indium compositional profiles of the quantum wells are provided using the phenomenological model. The fundamental transition energy, binding energy and oscillator strength of excitons as a function of indium segregation coefficient RR and well width are studied. For narrow wells (less than 40 ML), the exciton binding energy and oscillator strength decrease, but for wide wells (larger than 40 ML), increase with increasing the segregation coefficient RR. It is shown that indium segregation degrades the optical properties and results in a blue-shift of exciton transition energy in GaInAs/GaAs quantum wells.  相似文献   
147.
Er/Bi codoped SiO2 thin films were prepared by sol-gel method and spin-on technology with subsequent annealing process. The bismuth silicate crystal phase appeared at low annealing temperature while vanished as annealing temperature exceeded 1000 °C, characterized by X-ray diffraction, and Rutherford backscattering measurements well explained the structure change of the films, which was due to the decrease of bismuth concentration. Fine structures of the Er3+-related 1.54 μm light emission (line width less than 7 nm) at room temperature was observed by photoluminescence (PL) measurement. The PL intensity at 1.54 μm reached maximum at 800 °C and decreased dramatically at 1000 °C. The PL dependent annealing temperature was studied and suggested a clear link with bismuth silicate phase. Excitation spectrum measurements further reveal the role of Bi3+ ions for Er3+ ions near infrared light emission. Through sol-gel method and thermal treatment, Bi3+ ions can provide a perfect environment for Er3+ ion light emission by forming Er-Bi-Si-O complex. Furthermore, energy transfer from Bi3+ ions to Er3+ ions is evidenced and found to be a more efficient way for Er3+ ions near infrared emission. This makes the Bi3+ ions doped material a promising application for future erbium-doped waveguide amplifier and infrared LED.  相似文献   
148.
Equilibrium geometries, relative stabilities, and magnetic properties of small AunMn (n=1-8) clusters have been investigated using density functional theory at the PW91P86 level. It is found that Mn atoms in the ground state AunMn isomers tend to occupy the most highly coordinated position and the lowest energy structure of AunMn clusters with even n is similar to that of pure Aun+1 clusters, except for n=2. The substitution of Au atom in Aun+1 cluster by a Mn atom improves the stability of the host clusters. Maximum peaks are observed for AunMn clusters at n=2, 4 on the size dependence of second-order energy differences and fragmentation energies, implying that the two clusters possess relatively higher stability. The HOMO-LUMO energy gaps of the ground state AunMn clusters show a pronounced odd-even oscillation with the number of Au atoms, and the energy gap of Au2Mn cluster is the biggest among all the clusters. The magnetism calculations indicate that the total magnetic moment of AunMn cluster, which has a very large magnetic moment in comparison to the pure Aun+1 cluster, is mainly localized on Mn atom.  相似文献   
149.
Self-organized periodic surface structures on ZnO have been observed after multiple linearly polarized femtosecond laser pulse irradiation. The observed self-organized structures are attributed to the second harmonics in the sample surface excited by the incident laser. The grating orientation could be adjusted by the laser polarization direction. We also find that fluences play an important role in the formation of self-organized nanostructures.  相似文献   
150.
A barrier with a tunable spin-valley dependent energy gap in silicene could be used as a spin and valley filter. Meanwhile, special resonant modes in unique quantum structure can act as energy filters. Hence we investigate valley and spin transport properties in the potential silicene quantum structures, i.e., single ferromagnetic barrier, single electromagnetic barrier and double electric barriers. Our quantum transport calculation indicates that quantum devices of high accuracy and efficiency (100% polarization), based on modulated silicene quantum structures, can be designed for valley, spin and energy filtering. These intriguing features are revealed by the spin, valley dependent line-type resonant peaks. In addition, line-type peaks in different structure depend on spin and valley diversely. The filter we proposed is controllable by electric gating.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号