首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10135篇
  免费   1976篇
  国内免费   1208篇
化学   7151篇
晶体学   90篇
力学   582篇
综合类   52篇
数学   1113篇
物理学   4331篇
  2024年   49篇
  2023年   237篇
  2022年   360篇
  2021年   432篇
  2020年   413篇
  2019年   391篇
  2018年   387篇
  2017年   321篇
  2016年   538篇
  2015年   483篇
  2014年   616篇
  2013年   817篇
  2012年   990篇
  2011年   956篇
  2010年   661篇
  2009年   638篇
  2008年   671篇
  2007年   578篇
  2006年   546篇
  2005年   430篇
  2004年   338篇
  2003年   257篇
  2002年   208篇
  2001年   185篇
  2000年   209篇
  1999年   233篇
  1998年   176篇
  1997年   166篇
  1996年   187篇
  1995年   151篇
  1994年   121篇
  1993年   97篇
  1992年   101篇
  1991年   58篇
  1990年   78篇
  1989年   55篇
  1988年   27篇
  1987年   29篇
  1986年   37篇
  1985年   38篇
  1984年   13篇
  1983年   17篇
  1982年   8篇
  1981年   4篇
  1980年   6篇
  1979年   2篇
  1977年   1篇
  1976年   2篇
  1957年   1篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
171.
针对原子氧地面模拟设备需要通过电流源形成磁镜效应对其发射度进行约束,以及用于原子氧参数测试仪器校准,研制了一款基于运算放大器的精密压控恒流源。为了防止恒流源的供电电源纹波对电路性能的影响,又配套研制一款开关电源滤波器。最后测试表明:开关电源滤波器能有效减少电源噪声,+15 V电源的纹波系数降到万分之一,恒流源输出电流10 pA~1 A,精度500 fA,其稳定和负载稳定性优异。  相似文献   
172.
Enterovirus 71 (EV71) is a dominant pathogenic agent that may cause severe central nervous system (CNS) diseases among infants and young children in the Asia-pacific. The inflammasome is closely implicated in EV71-induced CNS injuries through a series of signaling pathways. However, the activation pathway of NLRP3 inflammasome involved in EV71-mediated CNS injuries remains poorly defined. In the studies, EV71 infection, ERK1/2 phosphorylation, and activation of NLRP3 are abolished in glioblastoma cells with low vimentin expression by CRISPR/Cas9-mediated knockdown. PD098059, an inhibitor of p-ERK, remarkably blocks the vimentin-mediated ERK1/2 phosphorylation in EV71-infected cells. Nuclear translocation of NF-κB p65 is dependent on p-ERK in a time-dependent manner. Moreover, NLRP3 activation and caspase-1 production are limited in EV71-infected cells upon the caffeic acid phenethyl ester (CAPE) administration, an inhibitor of NF-κB, which contributes to the inflammasome regulation. In conclusion, these results suggest that EV71-mediated NLRP3 inflammasome could be activated via the VIM-ERK-NF-κB pathway, and the treatment of the dephosphorylation of ERK and NF-κB inhibitors is beneficial to host defense in EV71-infected CNS.  相似文献   
173.
In this work, the lamellar structural evolution and microvoids variations of β polypropylene(β-PP) during the processing of two different stretching methods, sequential biaxial stretching and simultaneous biaxial stretching, were investigated in detail. It was found that different stretching methods led to significantly different lamellae deformation modes, and the microporous membranes obtained from the simultaneous biaxial stretching exhibited better mechanical properties. For the sequential biaxial stretching, abundant coarse fibers originated from the tight accumulation of the lamellae parallel to the longitudinal stretching direction, whereas the lamellae perpendicular to the stretching direction were easily deformed and separated. Those coarse fibers were difficult to be separated to form micropores during the subsequent transverse stretching process, resulting in a poor micropores distribution. However, for the simultaneous biaxial stretching, the β crystal had the same deformation mode, that is, the lamellae distributed in different directions were all destroyed, forming abundant microvoids and little coarse fibers.  相似文献   
174.
High resolution angle-resolved photoemission spectroscopy(ARPES) measurements are carried out on CaKFe_4 As_4,KCa_2 Fe_4 As_4 F_2 and(Ba_(0.6)K_(0.4))Fe_2 As_2 superconductors.Clear evidence of band folding between the Brillouin zone center and corners with a(π,π) wave vector has been found from the measured Fermi surface and band structures in all the three kinds of superconductors.A dominant ~(1/2)×~(1/2) surface reconstruction is observed on the cleaved surface of CaKFe_4As_4 by scanning tunneling microscopy(STM) measurements.We propose that the commonly observed ~(1/2)×~(1/2) reconstruction in the FeAs-based superconductors provides a general scenario to understand the origin of the(π,π) band folding.Our observations provide new insights in understanding the electronic structure and superconductivity mechanism in iron-based superconductors.  相似文献   
175.
Alloy nanoparticles represent one of the most important metal materials, finding increasing applications in diverse fields of catalysis, biomedicine, and nano-optics. However, the structural evolution of bimetallic nanoparticles in their full composition spectrum has been rarely explored at the molecular and atomic levels, imparting inherent difficulties to establish a reliable structure–property relationship in practical applications. Here, through an inter-particle reaction between [Au44(SR)26]2− and [Ag44(SR)30]4− nanoparticles or nanoclusters (NCs), which possess the same number of metal atoms, but different atomic packing structures, we reveal the composition-dependent structural evolution of alloy NCs in the alloying process at the molecular and atomic levels. In particular, an inter-cluster reaction can produce three sets of AuxAg44−x NCs in a wide composition range, and the structure of AuxAg44−x NCs evolves from Ag-rich [AuxAg44−x(SR)30]4− (x = 1–12), to evenly mixed [AuxAg44−x(SR)27]3− (x = 19–24), and finally to Au-rich [AuxAg44−x(SR)26]2− (x = 40–43) NCs, with the increase of the Au/Ag atomic ratio in the NC composition. In addition, leveraging on real-time electrospray ionization mass spectrometry (ESI-MS), we reveal the different inter-cluster reaction mechanisms for the alloying process in the sub-3-nm regime, including partial decomposition–reconstruction and metal exchange reactions. The molecular-level inter-cluster reaction demonstrated in this study provides a fine chemistry to customize the composition and structure of bimetallic NCs in their full alloy composition spectrum, which will greatly increase the acceptance of bimetallic NCs in both basic and applied research.

An inter-particle reaction between atomically precise [Au44(SR)26]2− (SR = thiolate) and [Ag44(SR)30]4− nanoparticles reveals the composition-dependent structural evolution of alloy AuxAg44−x nanoparticles at the atomic level.  相似文献   
176.
侯林涛  黄飞  曹镛  刘彭义 《化学进展》2007,19(11):1681-1688
有机/聚合物顶发射发光器件可以解决传统底发射发光器件的一系列不足。高性能顶发射发光器件的实现,首先必须优化器件结构,其次对电子注入材料和空穴注入材料提出更高的要求。本文从提高顶发射器件中电子注入和空穴注入方法入手,综述了国内外有机/聚合物顶发射电致发光器件的发展历史,研究现状,最新进展及以后的发展方向。  相似文献   
177.
聚酰亚胺/SiO2杂化膜的制备、表征和气体渗透性能   总被引:1,自引:0,他引:1  
采用溶胶凝胶法,在以TiO2为过渡层的硅藻土-莫来石陶瓷膜管基底上,制备了组分不同的聚酰亚胺/SiO2杂化膜。聚酰亚胺是利用4,4′-六氟亚异丙基邻苯二甲酸酐、2,4,6-三甲基-1,3-苯二胺和3,5-二氨基苯甲酸在溶液中进行亚胺化完成的。采用FT-IR、TG/DTA、DSC、SEM、BET和气体渗透测定对膜进行了表征和测试。结果表明,聚酰亚胺通过支链上的羧酸基和SiO2相键连织构成了具有规则孔道的空间网状结构,并且随着SiO2含量的增加孔径逐渐减小;杂化膜具有较高的热稳定性和有机无机兼容性;相对于聚酰亚胺膜,杂化膜对H2、CO2和H2O与N2相比较具有较高的分离性,SiO2含量为25(wt)%的杂化膜对H2/N2、CO2/N2和H2O/N2的分离因子分别达到55.9、31.1和42.8。  相似文献   
178.
Metal clusters, such as iron–sulfur clusters, play key roles in sustaining life and are intimately involved in the functions of metalloproteins. Herein we report the formation and crystal structure of a planar square tetranuclear silver cluster when silver ions were mixed with human copper chaperone Atox1. Quantum chemical studies reveal that two Ag 5s1 electrons in the tetranuclear silver cluster fully occupy the one bonding molecular orbital, with the assumption that this Ag4 cluster is Ag42+, leading to extensive electron delocalization over the planar square and significant stabilization. This bonding pattern of the tetranuclear silver cluster represents an aromatic all-metal structure that follows a 4n + 2 electron counting rule (n = 0). This is the first time an all-metal aromatic silver cluster was observed in a protein.

Metal clusters, such as iron–sulfur clusters, play key roles in sustaining life and are intimately involved in the functions of metalloproteins.  相似文献   
179.
Pyrrolidine, an important feedstock in the chemical industry, is commonly produced via vapor-phase catalytic ammoniation of tetrahydrofuran (THF). Obtaining pyrrolidine with high purity and low energy cost has extremely high economic and environmental values. Here we offer a rapid and energy-saving method for adsorptive separation of pyrrolidine and THF by using nonporous adaptive crystals of per-ethyl pillar[6]arene (EtP6). EtP6 crystals show a superior preference towards pyrrolidine in 50 : 50 (v/v) pyrrolidine/THF mixture vapor, resulting in rapid separation. The purity of pyrrolidine reaches 95% in 15 min of separation, and after 2 h, the purity is found to be 99.9%. Single-crystal structures demonstrate that the selectivity is based on the stability difference of host–guest structures after uptake of THF or pyrrolidine and non-covalent interactions in the crystals. Besides, EtP6 crystals can be recycled efficiently after the separation process owing to reversible transformations between the guest-free and guest-loaded EtP6.

Here we offer a rapid and energy-saving method for adsorptive separation of pyrrolidine and tetrahydrofuran by using nonporous adaptive crystals of per-ethyl pillar[6]arene.

Pyrrolidine is an important feedstock in the chemical industry that has been widely used in the production of food, pesticides, daily chemicals, coatings, textiles, and other materials.1 Particularly, pyrrolidine is a raw material for organic synthesis of medicines such as buflomedil, pyrrocaine, and prolintane.2 Moreover, pyrrolidine is also used as a solvent in the semi-synthetic process of simvastatin, one of the best-selling cardiovascular drugs.3 In the chemical industry, there are many preparation methods for pyrrolidine. The most common way to obtain pyrrolidine is the gas-phase catalytic method using tetrahydrofuran (THF) and ammonia as raw materials;4 this is carried out at high temperature under catalysis by solid acids. However, separating pyrrolidine from the crude product is difficult because of similar molecular weights and structures between pyrrolidine (b.p. 360 K and saturated vapor pressure = 1.8 kPa at 298 K) and THF (b.p. 339 K and saturated vapor pressure = 19.3 kPa at 298 K), which result in complicated processes and large energy consumption.5 Therefore, it is worthwhile to find energy-efficient and simple methods to separate pyrrolidine from THF.Many techniques and materials, including porous zeolites, metal–organic frameworks (MOFs), and porous polymers, have facilitated energy-efficient separations of important petrochemicals and feedstocks, including THF and pyrrolidine.6,7 However, some drawbacks of these materials cannot be ignored.8 For example, the relatively low thermal and moisture stabilities of MOFs limit their practical applications. Therefore, the development of new materials with satisfactory chemical and thermal stabilities for pyrrolidine/THF separation is of high significance.In the past decade, pillararenes have been widely studied in supramolecular chemistry.9 Owing to their unique pillar structures and diverse host–guest recognitions, pillararenes have been used in the construction of numerous supramolecular systems.10 Recently, nonporous adaptive crystals (NACs) of macrocycles, which have shown extraordinary performance in adsorption and separation, have been developed by our group as a new type of adsorption and separation materials.11 Unlike MOFs, covalent-organic frameworks (COFs), and other materials with pre-existing pores, NACs do not have “pores“ in the guest-free form, whereas they adsorb guest vapors through cavities of macrocycles and spaces between macrocycles. NACs have been applied in separations of many significant chemicals such as alkane isomers, aromatics, and halohydrocarbon isomers.12 However, such materials have never been used to separate pyrrolidine and THF. Herein, we utilized pillararene crystals as a separation material and realized the selective separation of pyrrolidine from a mixture of pyrrolidine and THF. We found that nonporous crystals of per-ethyl pillar[6]arene (EtP6) exhibited a shape-sorting ability at the molecular level towards pyrrolidine with an excellent preference, while crystals of per-ethyl pillar[5]arene (EtP5) did not (Scheme 1). In-depth investigations revealed that the separation was driven by the host–guest complexation between pyrrolidine and EtP6, which resulted in the formation of a more stable structure upon adsorption of pyrrolidine vapor in the crystalline state. EtP6 crystals can also adsorb THF. However, when these two chemicals simultaneously exist as the vapor of a 50 : 50 (v/v) mixture, EtP6 prefers pyrrolidine as an adsorption target. Compared with previously reported NAC-based separation, this separation took place rapidly. 95% purity was achieved in 15 min, and the purity increased to 99.9% after 2 h of separation. Moreover, pyrrolidine was removed upon heating, along with the structural transformation of EtP6 back to its original state, endowing EtP6 with excellent recyclability.Open in a separate windowScheme 1Chemical structures and cartoon representations: (a) EtP5 and EtP6; (b) THF and pyrrolidine.EtP5 and EtP6 were prepared as previously described and then a pretreatment process was carried out to obtain guest-free EtP5 and EtP6 (Fig. S1–S4†).13 According to powder X-ray diffraction (PXRD) patterns, activated EtP5 and EtP6 (denoted as EtP5α and EtP6β, respectively) were crystalline, and the patterns matched previous reports (Fig. S5 and S6).14 Studies from our group indicated that EtP5α and EtP6β crystals were nonporous, presumably due to their dense packing modes.We first investigated the adsorption capabilities of EtP5α and EtP6β towards pyrrolidine and THF vapors. Based on time-dependent solid–vapor adsorption procedures, both EtP5α and EtP6β showed good ability to adsorb pyrrolidine and THF vapors. As shown in Fig. 1a, the adsorption amount of THF in EtP5α was higher than that of pyrrolidine. It took 6 hours for EtP5α to reach saturation points for adsorption of both pyrrolidine and THF vapors. The final storage of THF in EtP5α was 2 : 1 (molar ratio to the host), whereas the storage of pyrrolidine was 1 : 1. It seemed that the THF vapor was favored to occupy EtP5α, which was ascribed to the relatively lower boiling point of THF. A similar phenomenon was found for EtP6β. Time-dependent solid–vapor adsorption experiments for pyrrolidine demonstrated that it took just 1 hour to reach the saturation point, while it took 4 hours for the THF vapor (Fig. 1b). The adsorption amount of THF vapor was twice that of pyrrolidine. 1H NMR spectra and thermogravimetric analyses (TGA) further confirmed the adsorption and storage of THF and pyrrolidine in both hosts (Fig. S7–S16†). Meanwhile, in the desorption process, adsorbed pyrrolidine and THF in EtP6β were easily released under reduced pressure and heating. Based on these data, it was clear that pyrrolidine could be adsorbed rapidly by both EtP5α and EtP6β in molar ratios = 1 : 1, while THF could be captured in a relatively slow process. Structural changes after adsorption of these two vapors were analyzed via PXRD experiments, in which varying degrees of changes before and after adsorption were observed, evidencing the appearance of new crystal structures (Fig. 1c and d). Nevertheless, only slight differences were observed in the PXRD patterns after the adsorption of THF or pyrrolidine, which might be ascribed to the structural similarity of the two molecules.Open in a separate windowFig. 1Time-dependent solid–vapor adsorption plots of (a) EtP5α and (b) EtP6β for single-component pyrrolidine and THF vapors. PXRD patterns of (c) EtP5α and (d) EtP6β: (I) original activated crystals; (II) after adsorption of THF vapor; (III) after adsorption of pyrrolidine vapor.To study the mechanism of adsorption, guest-loaded single crystals were obtained by slowly evaporating either THF or pyrrolidine solutions of pillararenes (Tables S2 and S3). In the crystal structure of THF-loaded EtP5 (2THF@EtP5, Fig. 2a and S17),11a two THF molecules are in the cavity of one EtP5 molecule driven by multiple C–H⋯O hydrogen bonds and C–H⋯π bonds. EtP5 assembles into honeycomb-like infinite edge-to-edge 1D channels. In the crystal structure of pyrrolidine-loaded EtP5 (pyrrolidine@EtP5, Fig. 2b and S19), one pyrrolidine molecule, stabilized by C–H⋯π interactions and C–H⋯O hydrogen bonds between hydrogen atoms on pyrrolidine and oxygen atoms on EtP5, is found in the cavity of EtP5. It''s worth mentioning that a hydrogen atom which is linked with the N atom of pyrrolidine also forms a strong hydrogen bond with an oxygen atom on the ethoxy group of EtP5. EtP5 forms imperfect 1D channels because of partial distortion of orientation. The PXRD patterns simulated from these crystal structures matched well with the experimental results (Fig. S18 and S20), which verified that the uptake of vapors transformed EtP5α into pyrrolidine-loaded EtP5.Open in a separate windowFig. 2Single crystal structures: (a) 2THF@EtP5; (b) pyrrolidine@EtP5.In the crystal structure of THF-loaded EtP6 (2THF@EtP6, Fig. 3a and S21), one EtP6 molecule encapsulated two THF molecules in its cavity with C–H⋯O interactions, forming a 1 : 2 host–guest complex. Although 1D channels are observed, EtP6 adopts a slightly different conformation, caused by the presence of THF. Moreover, the PXRD pattern of EtP6β after adsorption of THF vapor matches well with that simulated from 2THF@EtP6, which is evidence for the structural transformation upon adsorption. In the crystal structure of pyrrolidine-loaded EtP6 (pyrrolidine@EtP6, Fig. 3b and S23), a 1 : 1 host–guest complex with pyrrolidine is found. Driven by C–H⋯π interactions and C–H⋯O hydrogen bonds formed by hydrogen atoms on pyrrolidine and oxygen atoms on EtP6, one pyrrolidine molecule is in the cavity of EtP6 with the nitrogen atom inside the cavity. The window-to-window packing mode of hexagonal EtP6 molecules in pyrrolidine@EtP6 contributes to the formation of honeycomb-like infinite edge-to-edge 1D channels, favorable for guest adsorption. Likewise, the PXRD result of EtP6β after adsorption of pyrrolidine is in line with the simulated pattern of pyrrolidine@EtP6, indicating that EtP6β transformed into pyrrolidine@EtP6 in the presence of pyrrolidine (Fig. S22 and S24).Open in a separate windowFig. 3Single crystal structures: (a) 2THF@EtP6; (b) pyrrolidine@EtP6.According to the adsorption ability and different crystal structures after adsorption of guest vapors, we wondered whether EtP5α or EtP6β could separate mixtures of THF and pyrrolidine. We first evaluated separation by EtP5α. GC analysis indicated that the adsorption ratios of THF and pyrrolidine were 65.7% and 34.3%, respectively, when EtP5α was exposed to 50 : 50 (v/v) pyrrolidine/THF mixture vapor (Fig. 4a and S25). Such adsorption was also illustrated by 1H NMR (Fig. S26). Although EtP5α showed a preference for THF, the selectivity is not satisfactory and cannot be applied to industrial separation. The less satisfactory selectivity may be ascribed to the similar crystal structures of EtP5 after adsorption of THF or pyrrolidine and insufficient strong stabilizing interactions. The PXRD pattern of EtP5α after adsorption of the 50 : 50 (v/v) pyrrolidine/THF mixture vapor exhibited minor differences compared with that simulated from either 2THF@EtP5 or pyrrolidine@EtP5, due to poor selectivity (Fig. 4b).Open in a separate windowFig. 4(a)Time-dependent solid–vapor adsorption plot for EtP5α in the presence of 50 : 50 (v/v) pyrrolidine/THF mixture vapor. (b) PXRD patterns of EtP5α: (I) original EtP5α; (II) after adsorption of THF vapor; (III) after adsorption of pyrrolidine vapor; (IV) after adsorption of pyrrolidine/THF mixture vapor; (V) simulated from the single crystal structure of pyrrolidine@EtP5α; (VI) simulated from the single crystal structure of 2THF@EtP5α. (c) Time-dependent solid–vapor adsorption plot for EtP6β in the presence of 50 : 50 (v/v) pyrrolidine/THF mixture vapor. (d) PXRD patterns of EtP6β: (I) original EtP6β; (II) after adsorption of THF vapor; (III) after adsorption of pyrrolidine vapor; (IV) after adsorption of pyrrolidine/THF mixture vapor; (V) simulated from the single crystal structure of pyrrolidine@EtP6β; (VI) simulated from the single crystal structure of 2THF@EtP6β.Nevertheless, selective separation of THF and pyrrolidine was achieved with EtP6β. As shown in Fig. 4c, time-dependent solid–vapor adsorption experiments for a 50 : 50 (v/v) pyrrolidine/THF mixture were conducted. Unlike the phenomenon in single-component adsorption experiments, uptake of pyrrolidine by EtP6β increased and reached the saturation point rapidly (less than 2 hours), while capture of THF was negligible. According to the NMR and GC results (Fig. S27 and S28), the purity of pyrrolidine was determined to be 99.9% after 2 hours of adsorption, which indicates the remarkable selectivity of EtP6β for pyrrolidine. The PXRD pattern of EtP6β after adsorption of the mixture was consistent with that from single-component adsorption, indicating the structural transformation in the crystalline state upon selective capture of pyrrolidine from the mixture. Although THF and pyrrolidine have similar molecular structures, their non-covalent interactions with EtP6 are different. We assume that the hydrogen bond between N–H and the oxygen atom on EtP6 stabilizes pyrrolidine and leads to such selectivity. More importantly, compared with previous adsorption processes using NACs reported by our group, the selective separation of pyrrolidine was completed rapidly. According to the GC results, the purity of pyrrolidine reached around 95% in the initial 15 min, while it usually takes hours for selective separations of other substrates using NACs. Increasing the adsorption time to 2 h improves the purity to over 99%. The rapid separation of pyrrolidine with high purity using EtP6β shows great potential in industrial applications.Apart from selectivity, recyclability is also an important parameter for an adsorbent. Consequently, recycling experiments were carried out by heating pyrrolidine@EtP6 under vacuum at 100 °C to remove adsorbed pyrrolidine. According to TGA and PXRD analysis, the recycled EtP6 solid maintained crystallinity and structural integrity that were the same as those of activated EtP6 crystals (Fig. S29 and S30). Besides, it is worth mentioning that the recycled EtP6 solids were still capable of separating mixtures of pyrrolidine and THF without loss of performance after being recycled five times (Fig. S31).In conclusion, we explored the separation of pyrrolidine/THF mixtures using NACs of EtP5 and EtP6. Pyrrolidine was purified using EtP6 from a 50 : 50 (v/v) pyrrolidine/THF mixture with a purity of 99.9%, but EtP5 exhibited selectivity towards THF. Moreover, the separation of pyrrolidine by EtP6 was extremely fast so that over 95% purity was determined within 15 min of adsorption. The rapid separation is unique among NAC-based separations. Single-crystal structures revealed that the selectivity depended on the stability of the new structures after adsorption of the guests and the non-covalent interactions in the host–guest complexes. PXRD patterns indicated that the structures of the host crystals changed into the host–guest complexes after adsorption. Additionally, the NACs of EtP6 exhibited excellent recyclability over at least five runs; this endows EtP6 with great potential as an alternative adsorbent for rapid purification of pyrrolidine that can be applied in practical industry. The fast separation with such simple NACs in this work also reveals that minor structural differences can cause significant changes in properties, which should provide perspectives on designs of adsorbents or substrates with specifically tailored binding sites.  相似文献   
180.
All-solid-state Li metal battery has been regarded as a promising battery technology due to its high energy density based on the high capacity of lithium metal anode and high safety based on the all solid state electrolyte without inflammable solvent.However,challenges still exist mainly in the poor contact and unstable interface between electrolyte and electrodes.Herein,we demonstrate an asymmetric design of the composite polymer electrolyte with two different layers to overcome the interface issues at both the cathode and the anode side simultaneously.At the cathode side,the polypropylene carbonate layer has enough viscosity and flexibility to reduce the inter-facial resistance,while at the Li anode side,the polyethylene oxide layer modified with hexagonal boron nitride has high mechanical strength to suppress the Li dendrite growth.Owing to the synergetic effect between different components,the asprepared double layer composite polymer electrolyte demonstrates a large electrochemical window of5.17 V,a high ionic conductivity of 6.1×10~(-4) S/cm,and a transfe rence number of 0.56,featuring excellent ion transport kinetics and good chemical stability.All-solid-state Li metal battery assembled with LiFePO_4 cathode and Li anode delivers a high capacity of 150.9 mAh/g at 25℃ and 0.1 C-rate,showing great potential for practical applications.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号