全文获取类型
收费全文 | 161809篇 |
免费 | 28541篇 |
国内免费 | 15322篇 |
专业分类
化学 | 122915篇 |
晶体学 | 1818篇 |
力学 | 9088篇 |
综合类 | 986篇 |
数学 | 17261篇 |
物理学 | 53604篇 |
出版年
2024年 | 431篇 |
2023年 | 2528篇 |
2022年 | 4498篇 |
2021年 | 5068篇 |
2020年 | 6096篇 |
2019年 | 7045篇 |
2018年 | 5189篇 |
2017年 | 4694篇 |
2016年 | 9077篇 |
2015年 | 9059篇 |
2014年 | 10340篇 |
2013年 | 12955篇 |
2012年 | 14027篇 |
2011年 | 13728篇 |
2010年 | 10565篇 |
2009年 | 10229篇 |
2008年 | 10287篇 |
2007年 | 9002篇 |
2006年 | 8179篇 |
2005年 | 7257篇 |
2004年 | 5742篇 |
2003年 | 4744篇 |
2002年 | 5344篇 |
2001年 | 4204篇 |
2000年 | 3637篇 |
1999年 | 3012篇 |
1998年 | 2317篇 |
1997年 | 2139篇 |
1996年 | 2234篇 |
1995年 | 1801篇 |
1994年 | 1714篇 |
1993年 | 1363篇 |
1992年 | 1238篇 |
1991年 | 1175篇 |
1990年 | 939篇 |
1989年 | 668篇 |
1988年 | 566篇 |
1987年 | 459篇 |
1986年 | 431篇 |
1985年 | 365篇 |
1984年 | 281篇 |
1983年 | 187篇 |
1982年 | 167篇 |
1981年 | 121篇 |
1980年 | 90篇 |
1979年 | 51篇 |
1978年 | 35篇 |
1976年 | 42篇 |
1975年 | 41篇 |
1974年 | 47篇 |
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
181.
Chen Hou Chunnuan Ji Chunhua Wang Rongjun Qu 《Journal of polymer science. Part A, Polymer chemistry》2006,44(1):226-231
The reverse atom‐transfer radical polymerization (RATRP) technique using CuCl2/2,2′‐bipyridine (bipy) complex as a catalyst was applied to the living radical polymerization of acrylonitrile (AN). A hexasubstituted ethane thermal iniferter, diethyl 2,3‐dicyano‐2,3‐diphenylsuccinate (DCDPS), was firstly used as the initiator in this copper‐based RATRP initiation system. A CuCl2 to bipy ratio of 0.5 not only gives the best control of molecular weight and its distribution, but also provides rather rapid reaction rate. The rate of polymerization increases with increasing the polymerization temperature, and the apparent activation energy was calculated to be 57.4 kJ mol?1. Because the polymers obtained were end‐functionalized by chlorine atoms, they were used as macroinitiators to proceed the chain extension polymerization in the presence of CuCl/bipy catalyst system via a conventional ATRP process. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 226–231, 2006 相似文献
182.
J. Xu Y. Z. Meng S. J. Wang A. S. Hay 《Journal of polymer science. Part A, Polymer chemistry》2006,44(10):3328-3335
A series of novel soluble pyridazinone‐ or pyridazine‐containing poly(arylene ether)s were prepared by a polycondensation reaction. The pyridazinone monomer, 6‐(4‐hydroxyphenyl)pyridazin‐3(2H)‐one ( 1 ), was synthesized from the corresponding acetophenone and glyoxylic acid in a simple one‐pot reaction. The pyridazinone monomer was successfully copolymerized with bisphenol A (BPA) or 1,2‐dihydro‐4‐(4‐hydroxyphenyl)phthalazin‐1(2H)‐one (DHPZ) and bis(4‐fluorophenyl)sulfone to form high‐molecular‐weight polymers. The copolymers had inherent viscosities of 0.5–0.9 dL/g. The glass‐transition temperatures (Tg's) of the copolymers synthesized with BPA increased with increasing content of the pyridazinone monomer. The Tg's of the copolymers synthesized from DHPZ with different pyridazinone contents were similar to those of the two homopolymers. The homopolymers showed Tg's from 202 to 291 °C by differential scanning calorimetry. The 5% weight loss temperatures in nitrogen measured by thermogravimetric analysis were in the range of 411–500 °C. 4‐(6‐Chloropyridazin‐3‐yl)phenol ( 2 ) was synthesized from 1 via a simple one‐pot reaction. 2 was copolymerized with 4,4′‐isopropylidenediphenol and bis(4‐fluorophenyl)sulfone to form high‐Tg polymers. The copolymers with less than 80 mol % pyridazinone or chloropyridazine monomers were soluble in chlorinated solvents such as chloroform. The copolymers with higher pyridazinone contents and homopolymers were not soluble in chlorinated solvents but were still soluble in dipolar aprotic solvents such as N‐methylpyrrolidinone. The soluble polymers could be cast into flexible films from solution. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 3328–3335, 2006 相似文献
183.
Yan Yin Otoo Yamada Shunsuke Hayashi Kazuhiro Tanaka Hidetoshi Kita Ken‐Ichi Okamoto 《Journal of polymer science. Part A, Polymer chemistry》2006,44(12):3751-3762
A series of branched/crosslinked sulfonated polyimide (B/C‐SPI) membranes were prepared and evaluated as proton‐conducting ionomers based on the new concept of in situ crosslinking from sulfonated polyimide (SPI) oligomers and triamine monomers. Chemical branching and crosslinking in SPI oligomers with 1,3,5‐tris(4‐aminophenoxy)benzene as a crosslinker gave the polymer membranes very good water stability and mechanical properties under an accelerated aging treatment in water at 130 °C, despite their high ion‐exchange capacity (2.2–2.6 mequiv g?1). The resulting polymer electrolytes displayed high proton conductivities of 0.2–0.3 S cm?1 at 120 °C in water and reasonably high conductivities of 0.02–0.03 S cm?1 at 50% relative humidity. In a single H2/O2 fuel‐cell system at 90 °C, they exhibited high fuel‐cell performances comparable to those of Nafion 112. The B/C‐SPI membranes also displayed good performances in a direct methanol fuel cell with methanol concentrations as high as 50 wt % that were superior to those of Nafion 112. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 3751–3762, 2006 相似文献
184.
Ye Lin Feng Zeng‐Guo Zhao Yu‐Mei Wu Feng Chen Shi Wang Guo‐Qing 《Journal of polymer science. Part A, Polymer chemistry》2006,44(11):3650-3665
A novel cyclic ether monomer 3‐{2‐[2‐(2‐hydroxyethoxy)ethoxy]ethoxy‐methyl}‐3′‐methyloxetane (HEMO) was prepared from the reaction of 3‐hydroxymethyl‐3′‐methyloxetane tosylate with triethylene glycol. The corresponding hyperbranched polyether (PHEMO) was synthesized using BF3·Et2O as initiator through cationic ring‐opening polymerization. The evidence from 1H and 13C NMR analyses revealed that the hyperbranched structure is constructed by the competition between two chain propagation mechanisms, i.e. active chain end and activated monomer mechanism. The terminal structure of PHEMO with a cyclic fragment was definitely detected by MALDI‐TOF measurement. A DSC test implied that the resulting polyether has excellent segment motion performance potentially beneficial for the ion transport of polymer electrolytes. Moreover, a TGA assay showed that this hyperbranched polymer possesses high thermostability as compared to its liquid counterpart. The ion conductivity was measured to reach 5.6 × 10?5 S/cm at room temperature and 6.3 × 10?4 S/cm at 80 °C after doped with LiTFSI at a ratio of Li:O = 0.05, presenting the promise to meet the practical requirement of lithium ion batteries for polymer electrolytes. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 3650–3665, 2006 相似文献
185.
Tzong‐Ming Wu Shih‐Hsiang Lin 《Journal of polymer science. Part A, Polymer chemistry》2006,44(21):6449-6457
Size‐controllable polypyrrole (PPy)/multiwalled carbon nanotube (MWCNT) composites have been synthesized by in situ chemical oxidation polymerization directed by various concentrations of cationic surfactant cetyltrimethylammonium bromide (CTAB). Raman spectra, FTIR, SEM, and TEM were used to characterize their structure and morphology. These results showed that the composites are core (MWCNT)–shell (PPy) tubular structures with the thickness of the PPy layer in the range of 20–40 nm, depending on the concentration of CTAB. Raman and FTIR spectra of the composites are almost identical to those of PPy alone. The electrical conductivities of these composites are 1–2 orders of magnitude higher than those of PPy without MWCNTs. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 6449–6457, 2006 相似文献
186.
Amphiphilic biodegradable block copolymers [poly(sebacic anhydride)–poly(ethylene glycol)–poly(sebacic anhydride)] were synthesized by the melt polycondensation of poly(ethylene glycol) and sebacic anhydride prepolymers. The chemical structure, crystalline nature, and phase behavior of the resulting copolymers were characterized with 1H NMR, Fourier transform infrared, gel permeation chromatography, and differential scanning calorimetry. Microphase separation of the copolymers occurred, and the crystallinity of the poly(sebacic anhydride) (PSA) blocks diminished when the sebacic anhydride unit content in the copolymer was only 21.6%. 1H NMR spectra carried out in CDCl3 and D2O were used to demonstrate the existence of hydrophobic PSA domains as the core of the micelle. In aqueous media, the copolymers formed micelles after precipitation from water‐miscible solvents. The effects on the micelle sizes due to the micelle preparation conditions, such as the organic phase, dropping rate of the polymer organic solution into the aqueous phase, and copolymer concentrations in the organic phase, were studied. There was an increase in the micelle size as the molecular weight of the PSA block was increased. The diameters of the copolymer micelles were also found to increase as the concentration of the copolymer dissolved in the organic phase was increased, and the dependence of the micelle diameters on the concentration of the copolymer varied with the copolymer composition. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 1271–1278, 2006 相似文献
187.
Yiwang Chen Dongmei Liu Qilan Deng Xiaohui He Xiaofeng Wang 《Journal of polymer science. Part A, Polymer chemistry》2006,44(11):3434-3443
The direct preparation of grafting polymer brushes from commercial poly (vinylidene fluoride) (PVDF) films with surface‐initiated atom transfer radical polymerization (ATRP) is demonstrated. The direct initiation of the secondary fluorinated site of PVDF facilitated grafting of the hydrophilic monomers from the PVDF surface. Homopolymer brushes of 2‐(N,N‐dimethylamino)ethyl methacrylate (DMAEMA) and poly (ethylene glycol) monomethacrylate (PEGMA) were prepared by ATRP from the PVDF surface. The chemical composition and surface topography of the graft‐functionalized PVDF surfaces were characterized by X‐ray photoelectron spectroscopy, attenuated total reflectance/Fourier transform infrared spectroscopy, and atomic force microscopy. A kinetic study revealed a linear increase in the graft concentration of poly[2‐(N,N‐dimethylamino)ethyl methacrylate] (PDMAEMA) and poly[poly(ethylene glycol) monomethacrylate] (PPEGMA) with the reaction time, indicating that the chain growth from the surface was consistent with a controlled or living process. The living chain ends were used as macroinitiators for the synthesis of diblock copolymer brushes. The water contact angles on PVDF films were reduced by the surface grafting of DMAEMA and PEGMA. Protein adsorption experiments revealed a substantial antifouling property of PPEGMA‐grafted PVDF films and PDMAEMA‐grafted PVDF films in comparison with the pristine PVDF surface. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 3434–3443, 2006 相似文献
188.
Guey‐Sheng Liou Sheng‐Huei Hsiao Yi‐Kai Fang 《Journal of polymer science. Part A, Polymer chemistry》2006,44(21):6466-6483
Two new phenyl‐ and naphthyl‐substituted rigid‐rod aromatic dicarboxylic acid monomers, 2,2′‐diphenylbiphenyl‐4,4′‐dicarboxylic acid ( 4 ) and 2,2′‐di(1‐naphthyl)biphenyl‐4,4′‐dicarboxylic acid ( 5 ), were synthesized by the Suzuki coupling reaction of 2,2′‐diiodobiphenyl‐4,4′‐dicarboxylic acid dimethyl ester with benzeneboronic acid and naphthaleneboronic acid, respectively, followed by alkaline hydrolysis of the ester groups. Four new polyhydrazides were prepared from the dicarboxylic acids 4 and 5 with terephthalic dihydrazide (TPH) and isophthalic dihydrazide (IPH), respectively, via the Yamazaki phosphorylation reaction. These polyhydrazides were amorphous and readily soluble in many organic solvents. Differential scanning calorimetry (DSC) indicated that these hydrazide polymers had glass transition temperatures in the range of 187–234 °C and could be thermally cyclodehydrated into the corresponding oxadiazole polymers in the range of 300–400 °C. The resulting poly(1,3,4‐oxadiazole)s exhibited Tg's in the range of 252–283 °C, 10% weight‐loss temperature in excess of 470 °C, and char yield at 800 °C in nitrogen higher than 54%. These organo‐soluble polyhydrazides and poly(1,3,4‐oxadiazole)s exhibited UV–Vis absorption maximum at 262–296 and 264–342 nm in NMP solution, and their photoluminescence spectra showed maximum bands around 414–445 and 404–453 nm, respectively, with quantum yield up to 38%. The electron‐transporting properties were examined by electrochemical methods. Cyclic voltammograms of the poly(1,3,4‐oxadiazole) films cast onto an indium‐tin oxide (ITO)‐coated glass substrate exhibited reversible reduction redox with Eonset at ?1.37 to ?1.57 V versus Ag/AgCl in dry N,N‐dimethylformamide solution. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 6466–6483, 2006 相似文献
189.
Teruhiko Kai Yasunori Suma Shuichiro Ono Takeo Yamaguchi Shin‐ichi Nakao 《Journal of polymer science. Part A, Polymer chemistry》2006,44(2):846-856
We have investigated the effect of the surface state and surface treatment of the pores of an inorganic substrate on the plasma‐grafting behavior of pore‐filling‐type organic/inorganic composite membranes. Shirasu porous glass (SPG) was used as the inorganic substrate, and methyl acrylate was used as the grafting monomer. The grafting rate increased as the density of silanol on the SPG substrate increased. This result suggests that radicals are generated mainly at the silanol groups on the pore surface by plasma irradiation. The SPG substrates were treated with silane coupling agents used to control the mass of organic material bonded to the pore surface. The thickness of the grafted layer became thinner as the mass of organic material bonded to the pore surface of SPG increased. This decrease in the thickness of the grafted layer could be explained by the decrease in the penetration depth of vacuum ultraviolet rays contained in plasma having a wavelength of less than 160 nm that generated radicals in the pores of the substrate. The thickness of the grafted layer inside the SPG substrates could be controlled through the control of the mass of organic material bonded to the pore surface of the SPG substrate. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 846–856, 2006 相似文献
190.
Chen Hou Rongjun Qu Chunnuan Ji Chunhua Wang Chengguo Wang 《Journal of polymer science. Part A, Polymer chemistry》2006,44(1):219-225
FeCl3 coordinated by isophthalic acid was first used as a catalyst in the azobisisobutyronitrile‐initiated reverse atom transfer radical polymerization of acrylonitrile. N,N‐Dimethylformamide was used as a solvent to improve the solubility of the ligand. An FeCl3‐to‐isophthalic acid ratio of 0.5 not only gave the best control of the molecular weight and its distribution but also provided rather a rapid reaction rate. The effects of different solvents on the polymerization of acrylonitrile were also investigated. The rate of the polymerization in N,N‐dimethylformamide was faster than that in propylene carbonate and toluene. The molecular weight of polyacrylonitrile agreed reasonably well with the theoretical molecular weight in N,N‐dimethylformamide. The rate of polymerization increased with increasing polymerization temperature, and the apparent activation energy was calculated to be 59.9 kJ mol?1. Reverse atom transfer radical polymerization was first used to successfully synthesize acrylonitrile polymers with a molecular weight higher than 80,000 and a narrow polydispersity as low as 1.22. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 219–225, 2006 相似文献