首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5734篇
  免费   1005篇
  国内免费   558篇
化学   3694篇
晶体学   53篇
力学   255篇
综合类   30篇
数学   735篇
物理学   2530篇
  2024年   23篇
  2023年   130篇
  2022年   198篇
  2021年   212篇
  2020年   227篇
  2019年   196篇
  2018年   180篇
  2017年   174篇
  2016年   287篇
  2015年   251篇
  2014年   317篇
  2013年   386篇
  2012年   478篇
  2011年   547篇
  2010年   332篇
  2009年   331篇
  2008年   355篇
  2007年   327篇
  2006年   314篇
  2005年   260篇
  2004年   193篇
  2003年   168篇
  2002年   193篇
  2001年   150篇
  2000年   124篇
  1999年   155篇
  1998年   127篇
  1997年   108篇
  1996年   105篇
  1995年   71篇
  1994年   53篇
  1993年   52篇
  1992年   47篇
  1991年   59篇
  1990年   31篇
  1989年   27篇
  1988年   22篇
  1987年   17篇
  1986年   22篇
  1985年   17篇
  1984年   5篇
  1983年   5篇
  1982年   5篇
  1981年   6篇
  1980年   1篇
  1979年   2篇
  1978年   4篇
  1977年   1篇
  1976年   1篇
  1957年   1篇
排序方式: 共有7297条查询结果,搜索用时 31 毫秒
51.
Peptide-based nanofibres are a versatile class of tunable materials with applications in optoelectronics, sensing and tissue engineering. However, the understanding of the nanofibre surface at the molecular level is limited. Here, a series of homologous dilysine–diphenylalnine tetrapeptides were synthesised and shown to self-assemble into water-soluble nanofibres. Despite the peptide nanofibres displaying similar morphologies, as evaluated through atomic force microscopy and neutron scattering, significant differences were observed in their ability to support sensitive primary neurons. Contact angle and labelling experiments revealed that differential presentation of lysine moieties at the fibre surface did not affect neuronal viability; however the mobility of phenylalanine residues at the nanofibre surface, elucidated through solid- and gel-state NMR studies and confirmed through tethered bilayer lipid membrane experiments, was found to be the determining factor in governing the suitability of a given peptide as a scaffold for primary neurons. This work offers new insights into characterising and controlling the nanofibre surface at the molecular level.

The mobility of hydrophobic moieties at a peptide nanofibre surface determines its suitability as a scaffold for sensitive primary cells.  相似文献   
52.
Trace amounts of pesticides in soil were determined by liquid-phase microextraction (LPME) coupled to gas chromatography-mass spectrometry (GC-MS). The technique involved the use of a small amount (3 microl) of organic solvent impregnated in a hollow fiber membrane, which was attached to the needle of a conventional GC syringe. The organic solvent was repeatedly discharged into and withdrawn from the porous polypropylene hollow fiber by a syringe pump, with the pesticides being extracted from a 4 ml aqueous soil sample into the organic solvent within the hollow fiber. Aspects of the developed procedure such as organic solvent selection, extraction time, movement pattern of plunger, concentrations of humic acid and salt, and the proportion of organic solvent in the soil sample, were optimized. Limits of detection (LOD) were between 0.05 and 0.1 microg/g with GC-MS analysis under selected-ion monitoring (SIM). Also, this method provided good precision ranging from 6 to 13%; the relative standard deviations were lower than 10% for most target pesticides (at spiked levels of 0.5 microg/g in aqueous soil sample). Finally, the results were compared to those achieved using solid-phase microextraction (SPME). The results demonstrated that LPME was a fast (within 4 min) and accurate method to determine trace amounts of pesticides in soil.  相似文献   
53.
The adsorption properties of NO molecule on anionic, cationic, and neutral Au(n) clusters (n=1-6) are studied using the density functional theory with the generalized gradient approximation, and with the hybrid functional. For anionic and cationic clusters, the charge transfer between the Au clusters and NO molecule and the corresponding weakening and elongation of the N-O bond are essential factors of the adsorption. The neutral Au clusters have also remarkable adsorption ability to NO molecule. The adsorption energies of NO on the cationic clusters are generally greater than those on the neutral and anionic clusters.  相似文献   
54.
The isospecific 3,4-polymerization of isoprene has been achieved for the first time by use of a combination of a binuclear rare earth metal dialkyl complex, such as [Me2Si(C5Me4)(mu-PCy)YCH2SiMe3]2 (Cy = cyclohexyl), and an equimolar amount of [Ph3C][B(C6F5)4] as a catalyst system. A DFT calculation suggested that a binuclear monocationic monoalkyl species, such as [Me2Si(C5Me4)(mu-PCy)Y(mu-CH2SiMe3)Y(mu-PCy)(C5Me4)SiMe2]+, in which the alkyl group bridges the two metal centers, could be the true catalyst species.  相似文献   
55.
π‐Allyl (η3‐C3H5), a four‐electron donor, was used as a ligand model to replace η5‐C5Me4SiMe3 in DFT calculations on the tetranuclear yttrium polyhydrido complex (η5‐C5Me4SiMe3)4Y4H8 containing a Y4H8 tetrahedral core structure, which may separate the four π‐allyl groups and hence suppress the allyl ligand coupling during the computation. In terms of the calculated core geometry, isomerization energy barrier, charge population, and frontier orbital features of the complex, the η3‐C3H5 ligand model is comparable to η5‐C5H5. © 2006 Wiley Periodicals, Inc. Int J Quantum Chem, 2007  相似文献   
56.
What is the most favorite and original chemistry developed in your research group? We focus on developing new organic photovoltaic materials and exploring their applications in photovoltaic devices. Based on the new materials, we can figure out the correlations among chemical strictures, optoelectronic properties, and photovoltaic behaviors. Our group originally demonstrated quite a few build blocks for making conjugated polymers for photovoltaic applications, some of them have been broadly used by the researchers in the field. How do you get into this specific field? Could you please share some experiences with our readers? I got into this field when I was a graduate student in 2002, just because my supervisor gave me a research topic for synthesis of new conjugated polymers. At that moment, as a fresh graduate student, I had no chance to say yes or no, but to do it. The field of organic solar cells is oriented by the new organic photovoltaic materials. In the past decades, the materials have been updated for a few generations, which promoted the device performance to be higher and closer to practical applications. We have to concentrate on the fundamental problems but also need to follow the pace of the filed. How do you supervise your students? In my opinion, the students need more specific projects to get into the field so as to be well trained at the beginning. In the later stage, I prefer to encourage them to find and creatively figure out the real fundamental problems. I used to give them a few questions: Why do you need to do this project? How to make a clear definition for the problem? Can you suggest a new and better approach to solve it? What is the most important personality for scientific research? Passion, perseverance and sense of innovation. What is your favorite journal(s)? The journals publishing the latest and/or systematic research works in chemistry and material science.  相似文献   
57.
A simple method was used to prepare a "switchable" electrode surface by using self-assembled monolayers of dodecanethiol on a gold electrode. The dodecane-modified electrode was electrochemically inactive until the monolayer was soaked in solutions of 1,10-phenanthroline or 2,2'-bipyridine. The electroactive form of the electrode could be reverted back to the nonelectroactive form by rinsing the electrode. Surface IR results showed that both dodecanethiol and 1,10-phenanthroline exist in the mixed monolayer.  相似文献   
58.
The surfactant-encapsulated cluster (SEC) composed of a hydrophobic dimethyl dioctadecyl ammonium (DODA) shell and an encapsulated hydrophilic polyoxoanion core can form casting films. The structure of the casting film is influenced by evaporation rates of organic solvent. When the casting films are prepared by slow evaporation of chloroform, the alkyl chains are considered to possess a partial interdigitation, and the interdigitated length is 1.6 nm. The casting film structure is characterized by scanning force microscopy (SFM), Fourier transformation infrared (FT-IR), wide-angle X-ray diffraction, and differential scanning calorimetry (DSC).  相似文献   
59.
Decreasing the energy loss is one of the most feasible ways to improve the efficiencies of organic photovoltaic (OPV) cells. Recent studies have suggested that non-radiative energy loss ( ) is the dominant factor that hinders further improvements in state-of-the-art OPV cells. However, there is no rational molecular design strategy for OPV materials with suppressed . Herein, taking molecular surface electrostatic potential (ESP) as a quantitative parameter, we establish a general relationship between chemical structure and intermolecular interactions. The results reveal that increasing the ESP difference between donor and acceptor will enhance the intermolecular interaction. In the OPV cells, the enhanced intermolecular interaction will increase the charge-transfer (CT) state ratio in its hybridization with the local exciton state to facilitate charge generation, but simultaneously result in a larger . These results suggest that finely tuning the ESP of OPV materials is a feasible method to further improve the efficiencies of OPV cells.  相似文献   
60.
Cholesteric materials display unique optical properties which can be exploited in opto-electronic applications such as light emitting diodes. The key feature is the position of the wavelength of the emitted light relative to the one of the selective reflection band. We have synthesized a set of cellulose derivatives displaying the cholesteric phase with the aim to investigate the correlation between chemical structure and properties. Phase transition temperatures, the chain packing, the wavelength of selective reflection but also absorption and fluorescence spectra were investigated as a function of the degree of substitution (DS), the nature of lateral substituents, the composition of doped systems and blends of different cellulose derivatives. Investigated were furthermore the degree of circular polarization of the emitted light for guest–host systems and for cellulose systems with chromophores linked by covalent bonds to the cellulose backbone as well as their performance in light emitting diodes. The conclusion is that the optical properties can be accounted for on the basis of the model of a one-dimensional photonic crystal. The limiting factor with respect to opto-electronic applications is the poor control of the uniformity of the helix formation and orientation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号