首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   17284篇
  免费   2872篇
  国内免费   2375篇
化学   13078篇
晶体学   251篇
力学   903篇
综合类   172篇
数学   1978篇
物理学   6149篇
  2024年   49篇
  2023年   329篇
  2022年   456篇
  2021年   566篇
  2020年   632篇
  2019年   726篇
  2018年   553篇
  2017年   568篇
  2016年   786篇
  2015年   786篇
  2014年   985篇
  2013年   1367篇
  2012年   1549篇
  2011年   1700篇
  2010年   1161篇
  2009年   1137篇
  2008年   1163篇
  2007年   1128篇
  2006年   914篇
  2005年   807篇
  2004年   704篇
  2003年   594篇
  2002年   601篇
  2001年   501篇
  2000年   414篇
  1999年   325篇
  1998年   255篇
  1997年   206篇
  1996年   226篇
  1995年   187篇
  1994年   180篇
  1993年   142篇
  1992年   150篇
  1991年   117篇
  1990年   106篇
  1989年   96篇
  1988年   73篇
  1987年   47篇
  1986年   54篇
  1985年   48篇
  1984年   35篇
  1983年   19篇
  1982年   10篇
  1981年   11篇
  1980年   6篇
  1979年   13篇
  1977年   6篇
  1976年   8篇
  1975年   6篇
  1957年   5篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
The solar‐driven photocatalytic reduction of CO2 (CO2RR) into chemical fuels is a promising route to enrich energy supplies and mitigate CO2 emissions. However, low catalytic efficiency and poor selectivity, especially in a pure‐water system, hinder the development of photocatalytic CO2RR owing to the lack of effective catalysts. Herein, we report a novel atom‐confinement and coordination (ACC) strategy to achieve the synthesis of rare‐earth single erbium (Er) atoms supported on carbon nitride nanotubes (Er1/CN‐NT) with a tunable dispersion density of single atoms. Er1/CN‐NT is a highly efficient and robust photocatalyst that exhibits outstanding CO2RR performance in a pure‐water system. Experimental results and density functional theory calculations reveal the crucial role of single Er atoms in promoting photocatalytic CO2RR.  相似文献   
992.
1,2‐Bisphosphines have been identified as one class of important and powerful chiral ligands in asymmetric catalysis with transition metals. Herein, a copper(I)‐catalyzed asymmetric hydrophosphination of α,β‐unsaturated phosphine sulfides was developed with the assistance of “soft–soft” interaction between copper(I)‐catalyst and the phosphine sulfide moiety, which afforded 1,2‐bisphosphine derivatives with diversified electronic nature and steric hindrance in high to excellent yields with high to excellent enantioselectivity. Moreover, the challenging catalytic asymmetric hydrophosphination/protonation reaction was achieved with excellent enantioselectivity. Strikingly, the dynamic kinetic resolution of racemic diarylphosphines was also successfully carried out with high to excellent diastereo‐ and enantioselectivities. Interestingly, the nucleophilic copper(I)‐diphenylphosphide species was characterized by 31P NMR spectrum and mass spectrum. At last, three products were transformed to chiral 1,2‐bisphosphines, which were employed as ligands in Rh‐catalyzed asymmetric hydrogenation of α‐amino‐α,β‐unsaturated ester. The α‐amino acid derivative was produced in high enantioselectivity, which demonstrated the utility of the present methodology.  相似文献   
993.
994.
Zero‐dimensional (0D) organic metal halide hybrids, in which organic and metal halide ions cocrystallize to form neutral species, are a promising platform for the development of multifunctional crystalline materials. Herein we report the design, synthesis, and characterization of a ternary 0D organic metal halide hybrid, (HMTA)4PbMn0.69Sn0.31Br8, in which the organic cation N‐benzylhexamethylenetetrammonium (HMTA+, C13H19N4+) cocrystallizes with PbBr42?, MnBr42?, and SnBr42?. The wide band gap of the organic cation and distinct optical characteristics of the three metal bromide anions enabled the single‐crystalline “host–guest” system to exhibit emissions from multiple “guest” metal halide species simultaneously. The combination of these emissions led to near‐perfect white emission with a photoluminescence quantum efficiency of around 73 %. Owing to distinct excitations of the three metal halide species, warm‐ to cool‐white emissions could be generated by controlling the excitation wavelength.  相似文献   
995.
In this work, dual‐mode antibacterial conjugated polymer nanoparticles (DMCPNs) combined with photothermal therapy (PTT) and photodynamic therapy (PDT) are designed and explored for efficient killing of ampicillin‐resistant Escherichia coli (Ampr E. coli). The DMCPNs are self‐assembled into nanoparticles with a size of 50.4 ± 0.6 nm by co‐precipitation method using the photothermal agent poly(diketopyrrolopyrrole‐thienothiophene) (PDPPTT) and the photosensitizer poly[2‐methoxy‐5‐((2‐ethylhexyl)oxy)‐p‐phenylenevinylene] (MEH‐PPV) in the presence of poly(styrene‐co‐maleic anhydride) which makes nanoparticles disperse well in water via hydrophobic interactions. Thus, DMCPNs simultaneously possess photothermal effect and the ability of sensitizing oxygen in the surrounding to generate reactive oxygen species upon the illumination of light, which could easily damage resistant bacteria. Under combined irradiation of near‐infrared light (550 mW cm?2, 5 min) and white light (65 mW cm?2, 5 min), DMCPNs with a concentration of 9.6 × 10?4 µm could reach a 93% inhibition rate against Ampr E. coli, which is higher than the efficiency treated by PTT or PDT alone. The dual‐mode nanoparticles provide potential for treating pathogenic infections induced by resistant microorganisms in clinic.  相似文献   
996.
The first total syntheses of three unusual norrisolide‐type rearranged spongian diterpenes, cheloviolene C, seconorrisolide B, and seconorrisolide C, have been accomplished via a common intermediate through late‐stage ring‐scissoring. The synthesis features a Wolff ring contraction for the synthesis of the trans‐hydrindane system, and a crucial retro Diels–Alder reaction/intramolecular ene cyclization for the rapid stereoselective construction of the furo[2,3‐b]furan system, which is commonly seen in rearranged spongian diterpenes.  相似文献   
997.
Placobranchus ocellatus is well known to produce diverse and complex γ‐pyrone polypropionates. In this study, the chemical investigation of P. ocellatus from the South China Sea led to the discovery and identification of ocellatusones A–D, a series of racemic non‐γ‐pyrone polyketides with novel skeletons, characterized by a bicyclo[3.2.1]octane ( 1 , 2 ), a bicyclo[3.3.1]nonane ( 3 ) or a mesitylene‐substituted dimethylfuran‐3(2H)‐one core ( 4 ). Extensive spectroscopic analysis, quantum chemical computation, chemical synthesis, and/or X‐ray diffraction analysis were used to determine the structure and absolute configuration of the new compounds, including each enantiomer of racemic compounds 1 – 4 after chiral HPLC resolution. An array of new and diversity‐generating rearrangements is proposed to explain the biosynthesis of these unusual compounds based on careful structural analysis and comparison with six known co‐occurring γ‐pyrones ( 5 – 10 ). Furthermore, the successful biomimetic semisynthesis of ocellatusone A ( 1 ) confirmed the proposed rearrangement through an unprecedented acid induced cascade reaction.  相似文献   
998.
Li‐ and Mn‐rich layered oxides are among the most promising cathode materials for Li‐ion batteries with high theoretical energy density. Its practical application is, however, hampered by the capacity and voltage fade after long cycling. Herein, a finite difference method for near‐edge structure (FDMNES) code was combined with in situ X‐ray absorption spectroscopy (XAS) and transmission electron microscopy/electron energy loss spectroscopy (TEM/EELS) to investigate the evolution of transition metals (TMs) in fresh and heavily cycled electrodes. Theoretical modeling reveals a recurring partially reversible LiMn2O4‐like sub‐nanodomain formation/dissolution process during each charge/discharge, which accumulates gradually and accounts for the Mn phase transition. From the modeling of spectra and maps of the valence state over large regions of the cathodes, it was found that the phase change is size‐dependent. After prolonged cycling, the TMs displayed different levels of inactivity.  相似文献   
999.
Higher‐order cycloadditions, particularly [8+2] cycloadditions, are a straightforward and efficient strategy for constructing significant medium‐sized architectures. Typically, configuration‐restrained conjugated systems are utilized as 8π‐components for higher‐order concerted cycloadditions. However, for this reason, 10‐membered monocyclic skeletons have never been constructed via catalytic asymmetric [8+2] cycloaddition with high peri‐ and stereoselectivity. Here, we accomplished an enantioselective [8+2] dipolar cycloaddition via the merger of visible‐light activation and asymmetric palladium catalysis. This protocol provides a new route to 10‐membered monocyclic architectures bearing chiral quaternary stereocenters with high chemo‐, peri‐, and enantioselectivity. The success of this strategy relied on the facile in situ generation of Pd‐containing 1,8‐dipoles and their enantioselective trapping by ketene dipolarophiles, which were formed in situ via a photo‐Wolff rearrangement.  相似文献   
1000.
We have developed an unprecedented Pd‐catalyzed formal hydroalkylation of alkynes with hydrazones, which are generated in situ from naturally abundant aldehydes, as both alkylation reagents and hydrogen donors. The hydroalkylation proceeds with high regio‐ and stereoselectivity to form (Z)‐alkenes, which are more difficult to generate compared to (E)‐alkenes. The reaction is compatible with a wide range of functional groups, including hydroxy, ester, ketone, nitrile, boronic ester, amine, and halide groups. Furthermore, late‐stage modifications of natural products and pharmaceutical derivatives exemplify its unique chemoselectivity, regioselectivity, and synthetic applicability. Mechanistic studies indicate the possible involvement of Pd‐hydride intermediates.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号