首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   88530篇
  免费   12583篇
  国内免费   7362篇
化学   56357篇
晶体学   962篇
力学   5679篇
综合类   313篇
数学   9638篇
物理学   35526篇
  2024年   282篇
  2023年   1653篇
  2022年   2854篇
  2021年   3058篇
  2020年   3184篇
  2019年   2990篇
  2018年   2723篇
  2017年   2480篇
  2016年   3810篇
  2015年   3652篇
  2014年   4422篇
  2013年   5920篇
  2012年   7460篇
  2011年   7689篇
  2010年   5164篇
  2009年   4946篇
  2008年   5390篇
  2007年   4954篇
  2006年   4577篇
  2005年   3789篇
  2004年   3023篇
  2003年   2396篇
  2002年   2220篇
  2001年   2304篇
  2000年   1928篇
  1999年   2011篇
  1998年   1618篇
  1997年   1616篇
  1996年   1561篇
  1995年   1268篇
  1994年   1135篇
  1993年   927篇
  1992年   849篇
  1991年   725篇
  1990年   649篇
  1989年   505篇
  1988年   442篇
  1987年   363篇
  1986年   340篇
  1985年   289篇
  1984年   218篇
  1983年   151篇
  1982年   112篇
  1981年   109篇
  1980年   90篇
  1978年   57篇
  1977年   64篇
  1976年   63篇
  1975年   56篇
  1973年   56篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
11.
Liquid‐crystalline, segmented polyurethanes with methoxy–biphenyl mesogens pendant on the chain extender were synthesized by the conventional prepolymer technique and esterification reaction. Two, side‐chain, liquid‐crystalline (SCLC) polyurethanes with mesogens having spacers of six and eight methylene units were prepared. The structures of the mesogenic units and SCLC polyurethanes were confirmed by Fourier transform infrared spectroscopy and 1H NMR. Polymer properties were also examined by solubility tests, water uptakes, and inherent viscosity measurements. Differential scanning calorimetry studies indicated that the transition temperature of the isotropic to the liquid‐crystalline phase decreased with increasing spacer length. Wide‐angle X‐ray diffraction (WAXD) studies revealed the existence of liquid‐crystalline phases for both SCLC polyurethanes. Polarized optical microscopic investigations further confirmed the thermotropic liquid‐crystalline behaviors and nematic mesophases of both samples. Thermogravimetric analysis displayed better thermal stabilities for both SCLC polymers and indicated that the presence of mesogenic side chains may increase the thermal stability of segmented polyurethanes. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 290–302, 2004  相似文献   
12.
The composites of biodegradable poly(propylene carbonate) (PPC) reinforced with short Hildegardia populifolia natural fiber were prepared by melt mixing followed by compression molding. The mechanical properties, thermal properties, and morphologies of the composites were studied via static and dynamic mechanical measurements, thermogravimetric analysis, and scanning electron microscopy (SEM) techniques, respectively. Static tensile tests showed that the stiffness and tensile strength of the composites increased with an increasing fiber content. However, the elongation at break and the energy to break decreased dramatically with the addition of short fiber. The relationship between the experimental results and the compatibility or interaction between the PPC matrix and fiber was correlated. SEM observations indicated good interfacial contact between the short fiber and PPC matrix. Thermogravimetric analysis revealed that the introduction of short Hildegardia populifolia fiber led to a slightly improved thermooxidative stability of PPC. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 666–675, 2004  相似文献   
13.
Compared with linear polymers, more factors may affect the glass‐transition temperature (Tg) of a hyperbranched structure, for instance, the contents of end groups, the chemical properties of end groups, branching junctions, and the compactness of a hyperbranched structure. Tg's decrease with increasing content of end‐group free volumes, whereas they increase with increasing polarity of end groups, junction density, or compactness of a hyperbranched structure. However, end‐group free volumes are often a prevailing factor according to the literature. In this work, chain‐end, free‐volume theory was extended for predicting the relations of Tg to conversion (X) and molecular weight (M) in hyperbranched polymers obtained through one‐pot approaches of either polycondensation or self‐condensing vinyl polymerization. The theoretical relations of polymerization degrees to monomer conversions in developing processes of hyperbranched structures reported in the literature were applied in the extended model, and some interesting results were obtained. Tg's of hyperbranched polymers showed a nonlinear relation to reciprocal molecular weight, which differed from the linear relation observed in linear polymers. Tg values decreased with increasing molecular weight in the low‐molecular‐weight range; however, they increased with increasing molecular weight in the high‐molecular‐weight range. Tg values decreased with increasing log M and then turned to a constant value in the high‐molecular‐weight range. The plot of Tg versus 1/M or log M for hyperbranched polymers may exhibit intersecting straight‐line behaviors. The intersection or transition does not result from entanglements that account for such intersections in linear polymers but from a nonlinear feature in hyperbranched polymers according to chain‐end, free‐volume theory. However, the conclusions obtained in this work cannot be extended to dendrimers because after the third generation, the end‐group extents of a dendrimer decrease with molecular weight. Thus, it is very possible for a dendrimer that Tg increases with 1/M before the third generation; however, it decreases with 1/M after the third generation. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 1235–1242, 2004  相似文献   
14.
A series of polymer electrolytes based on multiarm polymers and lithium salt complexes were characterized by Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), and impedance measurement. The relationships of conductivity with salt concentration, temperature, and arm numbers are discussed. It is suggested that the star polymer has a higher solvency and ion transfer ability on lithium salts than on linear polymers. The conductivity maximum appeared at a higher salt concentration ([EO]/[Li] = 4). Impedance measurement suggested that the optimum conductivity was 2 × 10?4 s · cm?1. The conductivity increased with temperature and the dependence of ionic conductivity on temperature fits the Arrhenius equation. Among the studied systems, the star polymer with a five arm number performs better than other structures. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 4195–4198, 2004  相似文献   
15.
A new method for the synthesis of exfoliated graphite and polyaniline (PANI)/graphite nanocomposites was developed. Exfoliated graphite nanosheets were prepared through the microwave irradiation and sonication of synthesized expandable graphite. The nanocomposites were fabricated via the in situ polymerization of the monomer at the presence of graphite nanosheets. The as-synthesized graphite nanosheets and PANI/graphite nanocomposite materials were characterized with Fourier transform infrared spectroscopy, scanning electron microscopy, transmission electron microscopy, and thermogravimetric analysis (TGA). The conductivity of the PANI/graphite nanocomposites was dramatically increased over that of pure PANI. TGA indicated that the incorporation of graphite greatly improved the thermal stability of PANI. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 1972–1978, 2004  相似文献   
16.
Hydrogels containing benzo-18-crown-6 were used to modify microcantilevers for measurements of the concentration of Pb2+ in aqueous solutions. These microcantilevers undergo bending deflection upon exposure to solutions containing various Pb2+ concentrations as the result of a swelling of the hydrogels. It was found that a concentration of 10(-6) M Pb2+ can be detected using this technology. Other cations, such as Na+, have no effect on the deflection of this cantilever. The cation K+, which also complexes with benzo-18-crown-6, could interfere with Pb2+ detection, but only at high concentrations (> 10(-4) M).  相似文献   
17.
Double-diffusive convection due to a cylindrical source submerged in a salt-stratified solution is numerically investigated in this study. For proper simulation of the vortex generated around the cylinder, a computational domain with irregular shape is employed. Flow conditions depend strongly on the thermal Rayleigh number, Ra T , and the buoyancy ratio, R ρ. There are two types of onset of instability existing in the flow field. Both types are due to either the interaction of the upward temperature gradient and downward salinity gradient or the interaction of the lateral temperature gradient and downward salinity gradient. The onset of layer instability due to plume convection is due to the former, whereas, the onset of layer instability of layers around the cylinder is due to the latter. Both types can be found in the flow field. The transport mechanism of layers at the top of the basic plume belongs to former while that due to basic plume and layer around the cylinder are the latter. The increase in Ra T reinforces the plume convection and reduces the layer numbers generated around the cylinder for the same buoyancy ratio. For the same Ra T , the increase of R ρ suppresses the plume convection but reinforces the layers generated around the cylinder. The profiles of local Nusselt number reflects the heat transfer characteristics of plume convection and layered structure. The profiles of averaged Nusselt number are between the pure conduction and natural convection modes and the variation is due to the evolution of layers. Received on 13 September 1996  相似文献   
18.
The micro element content of food is an important quality index due to the action of these elements on human health. In this article, we discuss how to ensure the reliability of analytical data on micro elements in order to truly represent the condition of food. Sampling, treatment of the analytical sample, selection of the analytical method, standard solution, and certified reference material, blank test, calibration of the instrument and equipment, application of the quality control chart, assessment of the final analytical result, and quality assurance system are briefly described. Received: 5 July 2001 Accepted: 19 November 2001  相似文献   
19.
In theory, both polarity and steric hindrance are basic factors which affect molecular interactions. To investigate the optical properties and steric structures of chiral compounds having different chiral moieties which affect the wavelength of light reflection in liquid crystal (LC) cells, a series of novel chiral compounds and azobenzene derivatives were synthesized. The liquid crystalline phases of the compounds were identified using small angle X-ray diffraction, differential scanning calorimetry and polarizing optical microscopy. Cholesteric LC cells with various synthesized chiral dopants which selectively reflect visible light were first prepared, the photochemical switching behaviour of colours was then investigated, with special reference to the change in transmittance in cholesteric LC cells containing an azobenzene derivative as a photoisomerizable guest molecule. Reversible isomerization of azobenzene molecules occurred in the cholesteric systems, resulting in a depression of TChI and a shift of the selectively reflected wavelength. We discuss the photochemically driven change in the helical pitch of the cholesteric LCs with respect to structural effects involving the chiral moieties. Molecular interactions caused by the added dopants, reliability and stability of the photoisomerization, and UV irradiation effects on the cholesteric LC cells were also investigated. A real image was recorded through a mask on a cholesteric LC cell fabricated in this investigation.  相似文献   
20.
X.B. Liu  J.G. Li 《Journal of Non》2004,333(1):95-100
The microstructure evolution of decagonal quasicrystals in Al72Ni12Co16 alloy was investigated by the electromagnetic melting and cyclic superheating method. Single-phase decagonal quasicrystals have been obtained when the undercoolings were larger than 60 K. The decagonal quasicrystals formed at various undercoolings show different microstructural morphologies. Furthermore, grain refinement was found near the undercooling of 120 K. Based on current thermodynamic and dendrite growth theories, a dimensionless superheating parameter was adopted to explain the effect of processing conditions on the microstructure of Al72Ni12Co16 alloy. The result indicate that the fine equiaxied microstructure of decagonal quasicrystal (D-phase) formed near on undercooling of 120 K originates from the break-up of dendrites.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号