A 'living' controlled hydrogel formation method was first reported to create loose and compact in situ biodegradable hydrogels. The method executed under mild reaction conditions can conveniently tailor the hydrogel properties, and it has the potential to develop into a powerful tool for the design, synthesis, and self-assembly of novel tailor-made biomaterials and drug delivery systems. 相似文献
Density functional theory and fragment‐energy analysis have been used to probe the mechanism of the halogen–zinc exchange reaction. In their Full Paper on page 5686 ff. , M. Uchiyama, S. Nakamura et al. discuss three important factors in this reaction: The effect of the halogen species, the effect of the alkyl ligand on zinc, and the effect of the substrate nature.
A new series of thermally stable group 10 platinum(II) and group 12 mercury(II) poly-yne polymers containing biphenyl spacer trans-[-Pt(PBu3)2CC(p-C6H4)2CC-]n and [HgCC(p-C6H4)2CC-]n were prepared in good yields by Hagihara’s dehydrohalogenation reaction of the corresponding metal chloride precursors with 4,4′-diethynylbiphenyl HCC(p-C6H4)2CCH at room temperature. We report the optical spectroscopy of these polymetallaynes and compare the results with their bimetallic model complexes trans-[Pt(Ph)(PEt3)2CC(p-C6H4)2CCPt(Ph)(PEt3)2] and [MeHgCC(p-C6H4)2CCHgMe] as well as the group 11 gold(I) counterpart [(PPh3)AuCC(p-C6H4)2CCAu(PPh3)]. The structural properties of all model complexes have been studied by X-ray crystallography. The influence of the heavy metal atom in these metal alkynyl systems on the intersystem crossing rate and the spatial extent of lowest singlet and triplet excitons is systematically characterized. Our investigations indicate that the organic triplet emissions can be harvested by the heavy-atom effect of group 10-12 transition metals (viz., Pt, Au, and Hg) which enables efficient intersystem crossing from the S1 singlet excited state to the T1 triplet excited state. 相似文献
In this study, the determination of 4-Bromoaniline (4-BA) in green algae Chlamydomonas reinhardtii (C. reinhardtii) was investigated by applying continuous-flow microextraction (CFME) combined with high-performance liquid chromatography
(HPLC). Continuous-flow microextraction was conducted in a homemade glass chamber, i.e. the sample solution flowed through
a constant volume drop of solvent in the chamber at a constant flow rate. The effects of different factors on extraction efficiencies
were also investigated and these factors included the kind of extraction solvent, solvent drop volume, sample flow rate, extraction
time and addition amount of salt. Under the optimum extraction conditions (extraction solvent, carbon tetrachloride; solvent
drop volume, 3.5 μL; sample flow rate, 1.0 mL min−1; extraction time, 10 min; no addition of salt), the calibration plot was set up by plotting peak area against a series of
4-Bromoaniline concentrations (0.01–10 μg mL−1) in aqueous solution. The correlation coefficient (r) was 0.9990. The limit of detection (LOD) was 0.6 ng mL−1. The precision of this method was obtained by successive five time analyses of 100-ng mL−1 standard solution of 4-Bromoaniline, and the relative standard deviation (RSD) was 3.5%. The concentration factor was calculated
by the ratio of peak area of the analyte obtained after and before extraction and found to be 10.6. 4-Bromoaniline residues
in Chlamydomonas. reinhardtii cells and tap water samples were satisfactorily analyzed according to the method described above. 相似文献
We report an approach for growing aligned ZnO nanowire arrays with a high degree control over size, orientation, dimensionality, uniformity, and possibly shape. Our method combines e-beam lithography and a low temperature hydrothermal method to achieve patterned and aligned growth of ZnO NWs at <100degreesC on general inorganic substrates, such as Si and GaN, without using catalyst. This approach opens up the possibility of applying ZnO nanowires as sensor arrays, piezoelectric antenna arrays, two-dimensional photonic crystals, IC interconnects, and nanogenerators. 相似文献
An efficient and effective microwave-assisted cross-coupling of terminal alkynes with various aryl chlorides including sterically hindered, electron-rich, electron-neutral, and electron-deficient aryl chloride is developed. It proceeds faster and generally gives good to excellent yields and also can be extended successfully to the Suzuki coupling and Buchwald-Hartwig amination, as well as the Heck coupling with inert aryl chlorides. The short reaction times and simple reaction conditions coupling with a broad substrate scope render this method particularly attractive for the efficient preparation of biologically and medicinally interesting molecules. 相似文献
A simple and efficient approach has been set up for fabricating highly active sulfated titania-silica (SO(4)(2-)/TiO(2)-SiO(2)): Ti(SO(4))(2) was hydrolyzed in the presence of silica, making it possible to sulfate titania and form titania-silica mixed oxide in one step. This study was focused on investigating the roles of sulfate species and silica in improving the physicochemical properties and photoactivity of SO(4)(2-)/TiO(2)-SiO(2) through comparison with sulfated titania (SO(4)(2-)/TiO(2)) and sulfate-free catalysts (TiO(2) and TiO(2)-SiO(2)). Various characterization methods, including X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), X-ray photoelectron spectroscopy (XPS), and surface photovoltage spectroscopy (SPS), were employed to test these materials. The results revealed that for SO(4)(2-)/TiO(2) and TiO(2)-SiO(2) the sole presence of either sulfate species or silica imposes negative effects on the photocatalysis behavior of titania, leading them to have negligible photoactivities. On the contrary, in the case of SO(4)(2-)/TiO(2)-SiO(2), sulfate species and silica were proved to act in a cooperative manner; therefore, the following enhanced structure and surface properties of SO(4)(2-)/TiO(2)-SiO(2) were obtained: (i) relatively well-crystallized and smaller-size (15.4 nm) anatase-phase titania was formed upon 500 degrees C calcination without forming rutile phase and (ii) the formation of active surface sulfate species promotes the separation of photoinduced electron-hole pairs and therefore accelerates the photocatalysis reaction. Therefore, its photoactivity is enhanced as a result of the favorable synergic effects between sulfate species and silica due to their simultaneous presence. 相似文献
In the present study, we investigated the mechanisms of chamaejasmine action on human HEp-2 larynx carcinoma cells, which possess constitutively active Akt. Results indicated that chamaejasmine showed more notable anticancer activity than apigenin against HEp-2, PC-3, NCI-H1975, HT-29 and SKOV-3. Moreover, chamaejasmine presented most significantly inhibition towards HEp-2, with IC?? values of 1.92 μM. Treatment of HEp-2 cells with chamaejasmine (1-4 μM) resulted in signi?cant dose-dependent decrease in Akt phosphorylation at Serine473. Chamaejasmine-mediated dephosphorylation of Akt resulted in inhibition of its kinase activity, which was con?rmed by reduced phosphorylation of proapoptotic proteins BAD and glycogen synthase kinase-3, essential downstream targets of Akt. Inactivation of Akt seems to be associated with downregulation of insulin-like growth factor receptor 1 protein level and inhibition of its autophosphorylation upon chamaejasmine treatment. Exposure to chamaejasmine signi?cantly induced caspase-9 and caspase-3 activity. In vivo, chamaejasmine intake through gavage resulted in inactivation of Akt and induction of apoptosis in HEp-2 tumors. These results suggest that Akt inactivation and dephosphorylation of BAD is a critical event, at least in part, in chamaejasmine-induced HEp-2 cells apoptosis. 相似文献
The goal of computational protein structure prediction is to provide three-dimensional (3D) structures with resolution comparable to experimental results. Comparative modeling, which predicts the 3D structure of a protein based on its sequence similarity to homologous structures, is the most accurate computational method for structure prediction. In the last two decades, significant progress has been made on comparative modeling methods. Using the large number of protein structures deposited in the Protein Data Bank (~65,000), automatic prediction pipelines are generating a tremendous number of models (~1.9 million) for sequences whose structures have not been experimentally determined. Accurate models are suitable for a wide range of applications, such as prediction of protein binding sites, prediction of the effect of protein mutations, and structure-guided virtual screening. In particular, comparative modeling has enabled structure-based drug design against protein targets with unknown structures. In this review, we describe the theoretical basis of comparative modeling, the available automatic methods and databases, and the algorithms to evaluate the accuracy of predicted structures. Finally, we discuss relevant applications in the prediction of important drug target proteins, focusing on the G protein-coupled receptor (GPCR) and protein kinase families. 相似文献
The adsorption of water on FeO(111) is investigated using temperature programmed desorption (TPD) and infrared reflection absorption spectroscopy (IRAS). Well-ordered 2 ML thick FeO(111) films are grown epitaxially on a Pt(111) substrate. Water adsorbs molecularly on FeO(111) and desorbs with a well resolved monolayer peak. IRAS measurements as a function of coverage are performed for water deposited at 30 and 135 K. For all coverages (0.2 ML and greater), the adsorbed water exhibits significant hydrogen bonding. Differences in IRAS spectra for water adsorbed at 30 and 135 K are subtle but suggest that water adsorbed at 135 K is well ordered. Monolayer nitrogen TPD spectra from water covered FeO(111) surfaces are used to investigate the clustering of the water as a function of deposition or annealing temperature. Temperature dependent water overlayer structures result from differences in water diffusion rates on bare FeO(111) and on water adsorbed on FeO(111). Features in the nitrogen TPD spectra allow the monolayer wetting and 2-dimensional (2D) ordering of water on FeO(111) to be followed. Voids in a partially disordered first water layer exist for water deposited below 120 K and ordered 2D islands are found when depositing water above 120 K. 相似文献