首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   41367篇
  免费   6271篇
  国内免费   4049篇
化学   28511篇
晶体学   441篇
力学   2493篇
综合类   273篇
数学   4882篇
物理学   15087篇
  2024年   129篇
  2023年   840篇
  2022年   1353篇
  2021年   1487篇
  2020年   1594篇
  2019年   1452篇
  2018年   1288篇
  2017年   1208篇
  2016年   1785篇
  2015年   1827篇
  2014年   2212篇
  2013年   2860篇
  2012年   3565篇
  2011年   3525篇
  2010年   2403篇
  2009年   2285篇
  2008年   2445篇
  2007年   2181篇
  2006年   2032篇
  2005年   1696篇
  2004年   1424篇
  2003年   1098篇
  2002年   1034篇
  2001年   847篇
  2000年   768篇
  1999年   906篇
  1998年   762篇
  1997年   688篇
  1996年   768篇
  1995年   657篇
  1994年   595篇
  1993年   521篇
  1992年   507篇
  1991年   406篇
  1990年   367篇
  1989年   270篇
  1988年   239篇
  1987年   225篇
  1986年   167篇
  1985年   191篇
  1984年   174篇
  1983年   144篇
  1982年   98篇
  1981年   74篇
  1980年   63篇
  1979年   54篇
  1976年   45篇
  1975年   45篇
  1974年   42篇
  1973年   44篇
排序方式: 共有10000条查询结果,搜索用时 10 毫秒
991.
Malondialdehyde (MDA) engages in a triel bond (TrB) with TrX3 (Tr = B and Al; X = H, F, Cl, and Br) in three modes, in which the hydroxyl O, carbonyl O, and central carbon atoms of MDA act as the electron donors, respectively. A H···X secondary interaction coexists with the TrB in the former two types of complexes. The carbonyl O forms a stronger TrB than the hydroxyl O, and both of them are better electron donors than the central carbon atom. The TrB formed by the hydroxyl O enhances the intramolecular H-bond in MDA and thus promotes proton transfer in MDA-BX3 (X = Cl and Br) and MDA-AlX3 (X = halogen), while a weakening H-bond and the inhibition of proton transfer are caused by the TrB formed by the carbonyl O. The TrB formed by the central carbon atom imposes little influence on the H-bond. The BH2 substitution on the central C-H bond can also realise the proton transfer in the triel-bonded complexes between the hydroxyl O and TrH3 (Tr = B and Al).  相似文献   
992.
An effective method for separating and purifying critical saponins (polyphyllin II and polyphyllin VII) from a Paris polyphylla var. yunnanensis extract was developed in this study which was environmentally friendly and economical. Static adsorption kinetics, thermodynamics, and the dynamic adsorption-desorption of macroporous resins were investigated, and then the conditions of purification and separation were optimized by fitting with an adsorption thermodynamics equation and a kinetic equation. Effective NKA-9 resin from seven macroporous resins was screened out to separate and purify the two saponins. The static adsorption and dynamic adsorption were chemical and physical adsorption dual-processes on the NKA-9 resin. Under the optimum parameters, the contents of polyphyllin II and polyphyllin VII in the product were 17.3-fold and 28.6-fold those in plant extracts, respectively. The total yields of the two saponins were 93.16%. This research thus provides a theoretical foundation for the large-scale industrial production of the natural drugs polyphyllin II and polyphyllin VII.  相似文献   
993.
With the continuous development of China’s economy and society, people and the government have higher and higher requirements for food safety. Testing for food dopants and toxins can prevent the occurrence of various adverse health phenomena in the world’s population. By deploying new and powerful sensors that enable rapid sensing processes, the food industry can help detect trace adulteration and toxic substances. At present, as a common food safety detection method, lateral flow immunochromatography (LFI) is widely used in food safety testing, environmental testing and clinical medical treatment because of its advantages of simplicity, speed, specificity and low cost, and plays a pivotal role in ensuring food safety. This paper mainly focuses on the application of lateral flow immunochromatography and new technologies combined with test strips in food safety detection, such as aptamers, surface-enhanced Raman spectroscopy, quantum dots, electrochemical test strip detection technology, biosensor test strip detection, etc. In addition, sensing principles such as fluorescence resonance energy transfer can also more effective. Different methods have different characteristics. The following is a review of the application of these technologies in food safety detection.  相似文献   
994.
A cascade 6-endo-dig cyclization reaction was developed for the switchable synthesis of halogen and non-halogen-functionalized pyrazolo[3,4-b]pyridines from 5-aminopyrazoles and alkynyl aldehydes via C≡C bond activation with silver, iodine, or NBS. In addition to its wide substrate scope, the reaction showed good functional group tolerance as well as excellent regional selectivity. This new protocol manipulated three natural products, and the arylation, alkynylation, alkenylation, and selenization of iodine-functionalized products. These reactions demonstrated the potential applications of this new method.  相似文献   
995.
Camellia vietnamensis Huang is an important woody oil crop in China, which has attracted much attention because of its abundant nutritional components and pharmaceutical value. Its seeds undergo a complex series of physiological and biochemical changes during maturation, with consequent alterations in metabolites. In order to investigate the endogenous metabolism of C. vietnamensis on Hainan Island during seed development, in this study, ultra-high-performance liquid tandem chromatography coupled with quadrupole time-of-flight mass spectrometry (UHPLC/Q-TOF-MS) and multivariate statistical analysis (MSA) were used to analyze the differences in the chemical compounds of C. vietnamensis seeds among the four maturation stages. A total of 293 metabolites were identified from the methanol extract of the seeds of C. vietnamensis. Five metabolites, belonging to benzene and substituted derivatives, 5′-deoxyribonucleosides and linear 1,3-diarylpropanoids, were found in all three comparison groups, with consistently down-regulated trends. The Kyoto Encyclopedia of Genes and Genomes (KEGG) results showed that phloretin and 5′-methylthioadenosine were the differentially expressed metabolites when seeds were in the growth periods of S2 and S3, and indole and L-tryptophan were the differentially expressed metabolites when seeds were in the growth periods of S3 and S4. In addition, 34 flavonoid metabolites were detected, of which 4 were differentially expressed. It was indicated that flavonoids dynamically change during all the oil-tea camellia seed development stages. The findings provide data for the better understanding of endogenous metabolic pathways during C. vietnamensis seed development.  相似文献   
996.
Osthol (osthole), known as a neuroprotective drug, has shown potent anticancer activity. However, the potential clinical application of osthol is limited due to its low water solubility and low bioavailability. Polybutyl cyanoacrylate (PBCA) has been widely used to improve the solubility of drugs with poor water solubility. In this study, an orthogonal experimental design (OED) was applied to design the preparation process of PBCA nanoparticles (NPs). Then, nanoparticles were prepared and evaluated in terms of physicochemical properties, in vitro release, and cellular uptake, etc. Further, the anti-cancer activity of osthol-PBCA NPs was demonstrated in SH-SY5Y cells. The pharmacokinetics and area under the curve (AUC) were investigated. The obtained osthol-NPs presented a spherical shape with a particle size of 110 ± 6.7 nm, a polydispersity index (PDI) of 0.126, and a zeta potential of −13 ± 0.32 mV. Compared with the free osthol, the drugs in osthol-NPs presented better stability and sustained release pattern activity. In vitro analysis using SH-SY5Y neuroblastoma cells showed that osthol-loaded nanoparticles displayed a significantly enhanced intracellular absorption process (three times) and cytotoxicity compared with free osthol (p < 0.05, increased 10–20%). The in vivo pharmacokinetic study revealed that the AUC of osthol-NPs was 3.3-fold higher than that of free osthol. In conclusion, osthol-PBCA NPs can enhance the bioactivity of osthol, being proposed as a novel, promising vehicle for drug delivery.  相似文献   
997.
998.
Hypoxia is a common biological condition in many malignant solid tumors that plays an imperative role in regulating tumor growth and impacting the treatment’s therapeutic effect. Therefore, the hypoxia assessment is of great significance in predicting tumor development and evaluating its prognosis. Among the plenty of existing tumor diagnosis techniques, magnetic resonance imaging (MRI) offers certain distinctive features, such as being free of ionizing radiation and providing images with a high spatial resolution. In this study, we develop a fluorescent traceable and hypoxia-sensitive T1-weighted MRI probe (Fe3O4-Met-Cy5.5) via conjugating notable hypoxia-sensitive metronidazole moiety and Cy5.5 dye with ultrasmall iron oxide (Fe3O4) nanoparticles. The results of in vitro and in vivo experiments show that Fe3O4-Met-Cy5.5 has excellent performance in relaxivity, biocompatibility, and hypoxia specificity. More importantly, the obvious signal enhancement in hypoxic areas indicates that the probe has great feasibility for sensing tumor hypoxia via T1-weighted MRI. These promising results may unlock the potential of Fe3O4 nanoparticles as T1-weighted contrast agents for the development of clinical hypoxia probes.  相似文献   
999.
Indole diterpenes are a large class of secondary metabolites produced by fungi, possessing a cyclic diterpenoid backbone and an indole moiety. Novel structures and important biological activity have made indole diterpenes one of the focuses of synthetic chemists. Although the discovery, identification, structural diversity, biological activity and especially structure–activity relationship of indole diterpenes have been reported in some papers in recent years, they are absent of a systematic and comprehensive analysis, and there is no elucidation of enzymes related to this kind of natural product. Therefore, it is necessary to summarize the relevant reports to provide new perspectives for the following research. In this review, for the first time, the function of related synthases and the structure–activity relationship of indole diterpenes are expounded, and the recent research advances of them are emphasized.  相似文献   
1000.
Vanadomolybdates (VMos), comprised of Mo and V in high valences with O bridges, are one of the most important types of polyoxometalates (POMs), which have high activity due to their strong capabilities of gaining/losing electrons. Compared with other POMs, the preparation of VMos is difficult due to their relatively low structural stability, especially those with unclassical architectures. To overcome this shortcoming, in this study, triol ligands were applied to synthesize VMos through a beaker reaction in the presence of V2O5, Na2MoO4, and organic species in the aqueous solution. The single-crystal X-ray diffraction results indicate that two VMo clusters, Na4{V5Mo2O19[CH3C(CH2O)3]}∙13H2O and Na4{V5Mo2O19[CH3CH2C(CH2O)3]}∙13H2O, with a similar architecture, were synthesized, which were both stabilized by triol ligand and {MoO6} polyhedron. Both clusters are composed of five V ions and one Mo ion in a classical Lindqvist arrangement with an additional Mo ion, showing an unprecedented hepta-nuclear VMo structure. The counter Na+ cations assemble into one-dimensional channels, which facilitates the transport of protons and was further confirmed by proton conductivity experiments. The present results provide a new strategy to prepare and stabilize VMos, which is applicable for developing other compounds, especially those with untraditional architectures.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号