首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   235篇
  免费   6篇
  国内免费   1篇
化学   181篇
晶体学   2篇
力学   3篇
数学   15篇
物理学   41篇
  2023年   4篇
  2021年   6篇
  2020年   7篇
  2019年   7篇
  2018年   5篇
  2017年   2篇
  2016年   7篇
  2015年   7篇
  2014年   6篇
  2013年   9篇
  2012年   14篇
  2011年   22篇
  2010年   14篇
  2009年   8篇
  2008年   18篇
  2007年   12篇
  2006年   18篇
  2005年   16篇
  2004年   15篇
  2003年   11篇
  2002年   10篇
  2001年   10篇
  2000年   6篇
  1999年   1篇
  1998年   1篇
  1997年   2篇
  1995年   1篇
  1990年   1篇
  1989年   1篇
  1986年   1篇
排序方式: 共有242条查询结果,搜索用时 31 毫秒
111.
We present a process for the phase-transfer of gold nanoparticles from an aqueous to an organic medium with normal alkanethiols. This method can be applied not only to large nanospheres (d~100 nm) but also to anisotropic nanoparticles like nanorods and nanoplates. It allows the comparison of the nanoparticle optical properties when they are dispersed in both aqueous and organic media.  相似文献   
112.
Using materials with high thermal conductivity is a matter of great concern in the field of thermal management. In this study, we present our experimental results on two-dimensional thermal conductivity of carbon nanotube (CNT) films obtained by using an optical method based on Raman spectroscopy. We use four kinds of CNTs in film preparation to investigate the effect of CNT type on heat spreading performance of CNT films. This first comparative study using the optical method shows that the arc-discharge single-walled carbon nanotubes yield the best heat spreading film. We also show that the Raman method renders reasonable thermal conductivity value as long as the sample is a transparent film by testing CNT films with various transmittance. This study provides useful information on characterization of thermal conduction in transparent CNT films and could be an important step toward high-performance carbon-based heat spreading films.  相似文献   
113.
Recent evidence has suggested that human skin fibroblasts may represent a novel source of therapeutic stem cells. In this study, we report a 3-stage method to induce the differentiation of skin fibroblasts into insulin- producing cells (IPCs). In stage 1, we establish the isolation, expansion and characterization of mesenchymal stem cells from human labia minora dermis- derived fibroblasts (hLMDFs) (stage 1: MSC expansion). hLMDFs express the typical mesenchymal stem cell marker proteins and can differentiate into adipocytes, osteoblasts, chondrocytes or muscle cells. In stage 2, DMEM/F12 serum-free medium with ITS mix (insulin, transferrin, and selenite) is used to induce differentiation of hLMDFs into endoderm-like cells, as determined by the expression of the endoderm markers Sox17, Foxa2, and PDX1 (stage 2: mesenchymal-endoderm transition). In stage 3, cells in the mesenchymal- endoderm transition stage are treated with nicotinamide in order to further differentiate into self-assembled, 3-dimensional islet cell-like clusters that express multiple genes related to pancreatic β-cell development and function (stage 3: IPC). We also found that the transplantation of IPCs can normalize blood glucose levels and rescue glucose homeostasis in streptozotocin- induced diabetic mice. These results indicate that hLMDFs have the capacity to differentiate into functionally competent IPCs and represent a potential cell-based treatment for diabetes mellitus.  相似文献   
114.
115.
Organic dyes containing indolo[1,2-f]phenanthridine unit are a promising new class of sensitizers for dye-sensitized solar cells, as a result of their broad and intense visible absorptions. Under standard global AM 1.5 solar condition, the JK-61 sensitized cell gave a short circuit photocurrent density (Jsc) of 15.81 mA cm−2, an open circuit voltage (Voc) of 0.73 V, a fill factor of 0.72, corresponding to an overall conversion efficiency of 8.34%.  相似文献   
116.
117.
Two novel trialkylsilyl-containing organic sensitizers (JK-53 and JK-54) have been designed and synthesized. Nanocrystalline TiO2–silica-based dye-sensitized solar cells (DSSCs) were fabricated using these dyes. Under standard global AM 1.5 solar conditions, the JK-53-sensitized cell gave a short-circuit photocurrent density (Jsc) of 6.37 mA cm?2, an open-circuit voltage (Voc) of 0.70 V, and a fill factor of 0.74. These values correspond to an overall conversion efficiency (η) of 3.31%. By comparison, the JK-54-sensitized cell resulted in a Jsc of 7.52 mA cm?2, a Voc of 0.71 V, and a fill factor of 0.75. These values give an overall conversion efficiency of 4.01%.  相似文献   
118.
A ruthenium(ii)-catalyzed regioselective direct diamidation of 3-carbonylindoles at the C4- and C5-positions using various dioxazolones is described. This novel protocol allows for the effective installation of two amide groups on the benzene ring in indole. A remarkably broad substrate scope, excellent functional group tolerance, and mild reaction conditions are notable features of this protocol. Further explorations reveal that benzo[b]thiophene-3-carboxaldehyde is a viable substrate and affords its corresponding diamidation products. The diamido indoles are further converted into various functionalized products and used as sensors for metal ion detection. Density functional theory studies are also conducted to propose a reaction mechanism and provide a detailed understanding of the regioselectivity observed in the reaction.

Ruthenium(ii)-catalyzed regioselective C4-/C5-diamidation of 3-carbonylindoles is described and a DFT study is conducted to understand the observed regioselectivity and the mechanism.  相似文献   
119.
We report the synthesis of single crystalline alkali metal vanadate nanowires, Li-vanadate (Li4V10O27), Na-vanadate (NaV6O15), and K-vanadate (KV4O10) and their electrical properties in a single nanowire configuration. Alkali metal vanadate nanowires were obtained by a simple thermal annealing process with vanadium hydroxides(V(OH)3) nanoparticles containing Li+, Na+, and K+ ions and further the analysis of the migration of charged particles (Li+, Na+, and K+) in vanadate by measuring the conductivity of them. We found that their ionic conductivities can be empirically explained by the Rasch-Hinrichsen resistivity and interpreted on the basis of transition state theory. Our results thus indicate that the Li ion shows the lowest potential barrier of ionic conduction due to its small ionic size. Additionally, Na-vanadate has the lowest ion number per unit V2O5, resulting in increased distance to move without collision, and ultimately in low resistivity at room temperature.  相似文献   
120.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号