首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   443篇
  免费   9篇
  国内免费   2篇
化学   268篇
晶体学   4篇
力学   14篇
数学   26篇
物理学   142篇
  2021年   8篇
  2020年   9篇
  2019年   4篇
  2018年   6篇
  2017年   4篇
  2015年   7篇
  2014年   7篇
  2013年   11篇
  2012年   12篇
  2011年   22篇
  2010年   14篇
  2009年   7篇
  2008年   18篇
  2007年   19篇
  2006年   12篇
  2005年   23篇
  2004年   22篇
  2003年   13篇
  2002年   12篇
  2001年   19篇
  2000年   18篇
  1999年   6篇
  1998年   5篇
  1997年   4篇
  1996年   10篇
  1995年   5篇
  1994年   7篇
  1993年   10篇
  1992年   5篇
  1991年   8篇
  1990年   5篇
  1989年   3篇
  1988年   4篇
  1986年   4篇
  1985年   12篇
  1984年   4篇
  1983年   6篇
  1982年   6篇
  1981年   8篇
  1980年   4篇
  1979年   5篇
  1978年   6篇
  1976年   4篇
  1975年   5篇
  1974年   9篇
  1973年   6篇
  1972年   7篇
  1971年   3篇
  1968年   5篇
  1888年   3篇
排序方式: 共有454条查询结果,搜索用时 0 毫秒
441.
442.
Matrix-assisted laser desorption ionization ion mobility coupled to orthogonal time-of-flight mass spectrometry (MALDI-IM-oTOF MS) is evaluated as a tool for studying non-covalent complex (NCX) formation between peptides. The NCX formed between dynorphin 1-7 and Mini Gastrin I is used as a model system for comparison to previous MALDI experiments (Woods, A. S.; Huestis, M. A. J. Am. Soc. Mass Spectrom. 2001, 12, 88-96). The dynorphin 1-7/Mini Gastrin I complex is stable after more than a ms drift time through the He filled mobility cell. Furthermore, the effects of solution pH on NCX ion signal intensity is measured both by MALDI-IM-MS analysis and by nanoelectrospray mass spectrometry. When compared to the previous MALDI study this work shows that all three techniques give similar results. In addition, fragmentation can be observed from of the non-covalent complex parent ion that occurs prior to TOF mass analysis but after mobility separation, thus providing NCX composition information.  相似文献   
443.
Water-mediated interactions play a key role in carbohydrate-lectin binding, where the interactions involve a conserved water that is separated from the bulk solvent and present a bridge between the side chains of the protein and the carbohydrate ligand. To apply quantum mechanical methods to examine the role of conserved waters, we present an analysis in which the relevant carbohydrate atoms are modeled by methanol, and in which the protein is replaced by a limited number of amino acid side chains. Clusters containing a conserved water and a representative amino acid fragment were also examined to determine the influence of amino acid side chains on interaction energies. To quantify the differential binding energies of methanol versus water, quantum mechanical calculations were performed at the B3LYP/6-311++G(3df,3pd)//B3LYP/6-31+G(d) level in which either a methanol molecule was bound to the conserved water (liganded state) or in which a water molecule replaces the methanol (unliganded state). Not surprisingly, the binding of a water to clusters containing charged amino acid side chains was more favorable by 1.55 to 7.23 kcal/mol than that for the binding of a water to the corresponding pure water clusters. In contrast, the binding energy of water to clusters containing polar-uncharged amino acid side chains ranged from 4.35 kcal/mol less favorable to 4.72 kcal/mol more favorable than for binding to the analogous pure water clusters. The overall trend for the binding of methanol versus water, in any of the clusters, favored methanol by an average value of 1.05 kcal/mol. To extend these studies to a complex between a protein (Concanavalin A) and its carbohydrate ligand, a cluster was examined that contained the side chains of three key amino acids, namely asparagine, aspartate, and arginine, as well as a key water molecule, arranged as in the X-ray diffraction structure of Con A. Again, using methanol as a model for the endogenous carbohydrate ligand, energies of -5.94 kcal/mol and -5.70 kcal/mol were obtained for the binding of methanol and water, respectively, to the Con A-water cluster. The extent to which cooperativity enhanced the binding energies has been quantified in terms of nonadditive three-body contributions. In general, the binding of water or methanol to neutral dimers formed cooperative clusters; in contrast, the cooperativity in charged clusters depended on the overall geometry as well as the charge.  相似文献   
444.
445.
This paper describes studies of a series of macrocyclic β-sheet peptides 1 that inhibit the aggregation of a tau-protein-derived peptide. The macrocyclic β-sheet peptides comprise a pentapeptide "upper" strand, two δ-linked ornithine turn units, and a "lower" strand comprising two additional residues and the β-sheet peptidomimetic template "Hao". The tau-derived peptide Ac-VQIVYK-NH(2) (AcPHF6) aggregates in solution through β-sheet interactions to form straight and twisted filaments similar to those formed by tau protein in Alzheimer's neurofibrillary tangles. Macrocycles 1 containing the pentapeptide VQIVY in the "upper" strand delay and suppress the onset of aggregation of the AcPHF6 peptide. Inhibition is particularly pronounced in macrocycles 1a, 1d, and 1f, in which the two residues in the "lower" strand provide a pattern of hydrophobicity and hydrophilicity that matches that of the pentapeptide "upper" strand. Inhibition varies strongly with the concentration of these macrocycles, suggesting that it is cooperative. Macrocycle 1b containing the pentapeptide QIVYK shows little inhibition, suggesting the possibility of a preferred direction of growth of AcPHF6 β-sheets. On the basis of these studies, a model is proposed in which the AcPHF6 amyloid grows as a layered pair of β-sheets and in which growth is blocked by a pair of macrocycles that cap the growing paired hydrogen-bonding edges. This model provides a provocative and appealing target for future inhibitor design.  相似文献   
446.
The accurate prediction of absolute protein-ligand binding free energies is one of the grand challenge problems of computational science. Binding free energy measures the strength of binding between a ligand and a protein, and an algorithm that would allow its accurate prediction would be a powerful tool for rational drug design. Here we present the development of a new method that allows for the absolute binding free energy of a protein-ligand complex to be calculated from first principles, using a single simulation. Our method involves the use of a novel reaction coordinate that swaps a ligand bound to a protein with an equivalent volume of bulk water. This water-swap reaction coordinate is built using an identity constraint, which identifies a cluster of water molecules from bulk water that occupies the same volume as the ligand in the protein active site. A dual topology algorithm is then used to swap the ligand from the active site with the identified water cluster from bulk water. The free energy is then calculated using replica exchange thermodynamic integration. This returns the free energy change of simultaneously transferring the ligand to bulk water, as an equivalent volume of bulk water is transferred back to the protein active site. This, directly, is the absolute binding free energy. It should be noted that while this reaction coordinate models the binding process directly, an accurate force field and sufficient sampling are still required to allow for the binding free energy to be predicted correctly. In this paper we present the details and development of this method, and demonstrate how the potential of mean force along the water-swap coordinate can be improved by calibrating the soft-core Coulomb and Lennard-Jones parameters used for the dual topology calculation. The optimal parameters were applied to calculations of protein-ligand binding free energies of a neuraminidase inhibitor (oseltamivir), with these results compared to experiment. These results demonstrate that the water-swap coordinate provides a viable and potentially powerful new route for the prediction of protein-ligand binding free energies.  相似文献   
447.
Electrospray sample deposition was explored for matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOFMS). In this method, nanoliter volumes of matrix/analyte mixture were electrosprayed from a high voltage biased (1-2 kV) fused-silica capillary onto a grounded MALDI plate mounted 100-500 microm from the capillary outlet. Electrospray deposition with these conditions produced sample spots 200-300 microm in diameter thus matching the laser spot size. Varying spray voltage and distance resulted in different crystal sizes and volatilization rates for alpha-cyano-4-hydroxycinnamic acid matrix. Best results were obtained when the sample was deposited as wet droplets as opposed to deposition as dried solid. Under 'wet-spray' conditions, 2-4 microm diameter crystals were formed and detection limits for several neuropeptides were 0.7-25 amol. Samples could be pre-concentrated on the plate by spraying continuously and allowing sample to evaporate in a small spot. Sample volumes as large as 580 nL were deposited yielding a detection limit of 35 pM for neurotensin 1-11. Electrospray sample deposition yielded similar results when using atmospheric pressure-MALDI coupled with a quadrupole ion trap mass spectrometer, except that the sensitivity was approximately seven-fold worse.  相似文献   
448.
Fourteen new organic molecules A1A4, B1B5, C1C4 and D and a series of transition metal(II) complexes (Ni1Ni9 and Pd1Pd2b) were synthesized and studied in order to characterize the hemilability of 2-(1H-imidazol-2-yl)pyridine and 2-(oxazol-2-yl)pyridine ligands (A1A4 = 2-R2-6-(4,5-diphenyl-1R1-imidazol-2-yl)pyridines, R1 = H or CH3, R2 = H or CH3; B1B5 = 1-R2-2-(pyridin-2-yl)-1R1-phenanthro[9,10-d]imidazoles/oxazoles, R1 = H or CH3, R2 = H or CH3; C1C4 = 2-(6-R2-pyridin-2-yl)-1H-imidazo/oxazo[4,5-f][1,10]phenanthrolines, R2 = H or CH3; D = 2-mesityl-1H-imidazo[4,5-f][1,10]phenanthroline). They were also used to study the substituent effects on the donor strengths as well as the coordination chemistries of the imidazole/oxazole fragments of the hemilabile ligands.All the observed protonation–deprotonation processes found within pH 1–14 media pertain to the imidazole or oxazole rings rather than the pyridyl Lewis bases. The donor characteristics of the imidazole/oxazole ring can be estimated by spectroscopic methods regardless of the presence of other strong N donor fragments. The oxazoles possessed notably lower donor strengths than the imidazoles. The electron-withdrawing influence and capacity to hinder the azole base donor strength of 4,5-azole substituents were found to be in the order phenanthrenyl (B series) > 4,5-diphenyl (A series) > phenanthrolinyl (C series). An X-ray structure of Ni5b gave evidence for solvent induced ligand reconstitution while the structure of Pd2b provided evidence for solvent induced metal–ligand bond disconnection.Interestingly, alkylation of 1H-imidazoles did not necessarily produce the anticipated push of electron density to the donor nitrogen. Furthermore, substituents on the 4,5-carbons of the azole ring were more important for tuning donor strength of the azole base. DFT calculations were employed to investigate the observed trends. It is believed that the information provided on substituent effects and trends in this family of ligands will be useful in the rational design and synthesis of desired azole-containing chelate ligands, tuning of donor properties and application of this family of ligands in inorganic architectural designs, template-directed coordination polymer preparations, mixed-ligand inorganic self-assemblies, etc.  相似文献   
449.
采用质谱技术实时研究了金属有机源DIPTe和DMCd在MOCVD反应器中热裂解的性质。着重分析了可能发生的气相反应及热裂解机理,并探讨了在CdTe,HgCdTe实际生长条件下两个有机源之间可能发生的相互作用及其对热裂解温度的影响。  相似文献   
450.
Luminescent lanthanides possess ideal properties for biological imaging, including long luminescent lifetimes and emission within the optical window. Here, we report a novel approach to responsive luminescent Tb(iii) probes that involves direct modulation of the antenna excited triplet state energy. If the triplet energy lies too close to the 5D4 Tb(iii) excited state (20 500 cm−1), energy transfer to 5D4 competes with back energy transfer processes and limits lanthanide-based emission. To validate this approach, a series of pyridyl-functionalized, macrocyclic lanthanide complexes were designed, and the corresponding lowest energy triplet states were calculated using density functional theory (DFT). Subsequently, three novel constructs L3 (nitro-pyridyl), L4 (amino-pyridyl) and L5 (fluoro-pyridyl) were synthesized. Photophysical characterization of the corresponding Gd(iii) complexes revealed antenna triplet energies between 25 800 and 30 400 cm−1 and a 500-fold increase in quantum yield upon conversion of Tb(L3) to Tb(L4) using the biologically relevant analyte H2S. The corresponding turn-on reaction can be monitored using conventional, small-animal optical imaging equipment in presence of a Cherenkov radiation emitting isotope as an in situ excitation source, demonstrating that antenna triplet state energy modulation represents a viable approach to biocompatible, Tb-based optical turn-on probes.

The rational, analyte-mediated modulation of the relative energy of the lanthanide-sensitizing triplet state produces Tb-based luminescence, observable by a conventional optical imager in presence of the Cherenkov radiation emitting radioisotope 18F.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号