首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8179篇
  免费   404篇
  国内免费   55篇
化学   6086篇
晶体学   79篇
力学   161篇
数学   636篇
物理学   1676篇
  2023年   44篇
  2022年   100篇
  2021年   171篇
  2020年   148篇
  2019年   158篇
  2018年   116篇
  2017年   127篇
  2016年   276篇
  2015年   233篇
  2014年   308篇
  2013年   512篇
  2012年   636篇
  2011年   676篇
  2010年   436篇
  2009年   380篇
  2008年   563篇
  2007年   495篇
  2006年   482篇
  2005年   387篇
  2004年   335篇
  2003年   298篇
  2002年   321篇
  2001年   172篇
  2000年   177篇
  1999年   95篇
  1998年   80篇
  1997年   78篇
  1996年   83篇
  1995年   71篇
  1994年   40篇
  1993年   51篇
  1992年   49篇
  1991年   34篇
  1990年   40篇
  1989年   43篇
  1988年   19篇
  1987年   23篇
  1986年   20篇
  1985年   30篇
  1984年   25篇
  1983年   24篇
  1982年   22篇
  1981年   18篇
  1979年   16篇
  1978年   20篇
  1977年   22篇
  1976年   19篇
  1975年   14篇
  1973年   14篇
  1970年   18篇
排序方式: 共有8638条查询结果,搜索用时 15 毫秒
941.
942.
943.
944.
We perform molecular dynamics simulations (up to 6 ns) for the structure I clathrate hydrates of linear molecules CS, CS(2), OCS, and C(2)H(2) in large cages at different temperatures in the stability range to determine the angular distribution and dynamics of the guests in the large cages. The long axes of linear guest molecules in the oblate large structure I clathrate hydrate cages are primarily confined near the equatorial plane of the cage rather than axial regions. This non-uniform spatial distribution leads to well-known anisotropic lineshapes in the solid-state NMR spectra of the guest species. We use the dynamic distribution of guest orientations in the cages during the MD simulations at different temperatures to predict the (13)C NMR powder lineshapes of the guests in the large cages. The length of the guests and intermolecular interactions of the guests in the water cages determine the angular distribution and the mobility of the guests in the sI large cages at different temperatures. At low temperatures the range of motion of the guests in the cages are limited and this is reflected in the skew of the predicted (13)C lineshapes. As the guest molecules reach the fast motion limit at higher temperatures, the lineshapes for CS, OCS, and C(2)H(2) are predicted to have the "standard" powder lineshapes of guest molecules.  相似文献   
945.
Hybrid nanocomposite films of ITO-coated, self-assembled porous nanostructures of tungsten trioxide (WO(3)) were fabricated using electrochemical anodization and sputtering. The morphology and chemical nature of the porous nanostructures were studied by Scanning Electron Microscopy (SEM) and X-ray Photoelectron Spectroscopy (XPS), respectively. The photoelectrochemical (PEC) properties of WO(3) porous nanostructures were studied in various alkaline electrolytes and compared with those of titania nanotubes. A new type of alkaline electrolyte containing a mixture of NaOH and KOH was proposed for the first time to the best of our knowledge and shown to improve the photocurrent response of the photoanodes. Here, we show that both the WO(3) nanostructures and titania nanotubes (used for comparison) exhibit superior photocurrent response in the mixture of NaOH and KOH than in other alkaline electrolytes. The WO(3) porous nanostructures suffered from surface corrosion resulting in a huge reduction in the photocurrent density as a function of time in the alkaline electrolytes. However, with a protective coating of ITO (100 nm), the surface corrosion of WO(3) porous nanostructures reduced drastically. A tremendous increase in the photocurrent density of as much as 340% was observed after the ITO was applied to the WO(3) porous nanostructures. The results suggest that the hybrid ITO/WO(3) nanocomposites could be potentially coupled with titania nanotubes in a multi-junction PEC cell to expand the light absorption capability in the solar spectrum for water splitting to generate hydrogen.  相似文献   
946.
The conformational structures of jet-cooled acetaminophen were investigated in the gas phase by resonant 2-photon ionization and UV-UV hole-burning spectroscopy. In contrast to the results from a previous study, two nearly isoenergetic conformers were distinctly found in a supersonic molecular beam expansion and positively identified as the cis and trans isomers of acetaminophen by UV-UV hole-burning spectroscopy. The 0-0 bands of the cis and trans isomers were found at 33518.7 and 33485.6 cm(-1), respectively. The vibronic bands of the two isomers are close-lying and/or partially overlapping due to the small energy difference (33 cm(-1)) between the two 0-0 bands. As a consequence, the recorded resonant 2-photon ionization spectrum is highly congested in the low excitation energy region, which develops continuously into a featureless, broadened spectrum in the high energy region.  相似文献   
947.
Fully stretched DNA molecules are becoming a fundamental component of new systems for comprehensive genome analysis. Among a number of approaches for elongating DNA molecules, nanofluidic molecular confinement has received enormous attentions from physical and biological communities for the last several years. Here we demonstrate a well-optimized condition that a DNA molecule can stretch almost to its full contour length: the average stretch is 19.1 μm ± 1.1 μm for YOYO-1 stained λ DNA (21.8 μm contour length) in 250 nm × 400 nm channel, which is the longest stretch value ever reported in any nanochannels or nanoslits. In addition, based on Odijk's polymer physics theory, we interpret our experimental findings as a function of channel dimensions and ionic strengths. Furthermore, we develop a Monte Carlo simulation approach using a primitive model for the rigorous understanding of DNA confinement effects. Collectively, we present a more complete understanding of nanochannel confined DNA stretching via the comparisons to computer simulation results and Odijk's polymer physics theory.  相似文献   
948.
We performed density functional calculations to examine the intermolecular self‐interaction of metal tetraauride MAu4 (M=Ti, Zr, and Hf) clusters. We found that the metal auride clusters have strong dimeric interactions (2.8–3.1 eV) and are similar to the metal hydride analogues with respect to structure and bonding nature. Similarly to (MH4)2, the (μ‐Au)3 Cs structures with three three‐center two‐electron (3c–2e) bonds were found to be the most stable. Natural orbital analysis showed that greater than 96 % of the Au 6s orbital contributes to the 3c–2e bonds, and this predominant s orbital is responsible for the similarity between metal aurides and metal hydrides (>99 % H 1s). The favorable orbital interaction between occupied Au 6s and unoccupied metal d orbitals leads to a stronger dimeric interaction for MAu4‐MAu4 than the interaction for MH4‐MH4. There is a strong relationship between the dimeric interaction energy and the chemical hardness of its monomer for (MAu4)2 and (MH4)2.  相似文献   
949.
Inhibition of adipocytes differentiation is suggested to be an important strategy for prevention and/or treatment of obesity. In our present study, Cordyceps militaris showed significant inhibitory activity on adipocyte differentiation in 3T3-L1 preadipocytes as assessed by measuring fat accumulation using Oil Red O staining. Activity-guided fractionation led to the isolation of cordycepin (1), guanosine (2) and tryptophan (3) as active compounds. All the three compounds were more effective in the prevention of early stage of adipogenesis than in lipolysis. In addition, combinational treatment of three compounds significantly increased anti-adipogenic activity.  相似文献   
950.
Concentrated hard sphere suspensions often show an interesting nonlinear behavior, called strain stiffening, in which the viscosity or modulus starts to increase at critical strain amplitude. Sudden increase of rheological properties is similar to shear thickening; however, the particle dynamics in the strain stiffening under oscillatory shear flow does not necessarily coincide with the mechanism of shear thickening under step shear flow. In this study, we have systematically investigated the nonlinear rheology of non-colloidal (>1???m) hard sphere suspensions dispersed in Newtonian fluid near liquid-and-crystal coexistence region in order to better understand the strain stiffening behavior. The suspensions near liquid-and-crystal coexistence region are known to locally form the closed packing structure. The critical strain amplitude which is the onset of strain stiffening was different for the storage and loss modulus. But they converged to each other as the suspension forms a more crystalline structure. The critical strain amplitude was independent of medium viscosity, imposed angular frequency, and particle size, but was strongly dependent upon particle volume fraction. The onset of strain stiffening was explained in terms of shear-induced collision due to particle motion in the closed packing structure. Nonlinear stress wave-forms, which reflect the micro-structural change, were observed with the onset of strain stiffening. During the strain stiffening, enhanced elastic stress before and after flow reversal was observed which originates from changes in the suspension microstructure. Nonlinearity of the shear stress in terms of Fourier intensity was extremely increased up to 0.55. Beyond the strain stiffening, the suspension responded liquid-like and the nonlinearity decreased but the elastic shear stress was still indicating the microstructure rearrangement within a cycle.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号