首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10882篇
  免费   205篇
  国内免费   28篇
化学   7964篇
晶体学   42篇
力学   172篇
数学   1832篇
物理学   1105篇
  2021年   94篇
  2020年   165篇
  2019年   156篇
  2018年   89篇
  2017年   91篇
  2016年   195篇
  2015年   205篇
  2014年   196篇
  2013年   360篇
  2012年   396篇
  2011年   466篇
  2010年   352篇
  2009年   290篇
  2008年   459篇
  2007年   447篇
  2006年   472篇
  2005年   450篇
  2004年   383篇
  2003年   317篇
  2002年   327篇
  2001年   222篇
  2000年   155篇
  1999年   144篇
  1998年   179篇
  1997年   146篇
  1996年   151篇
  1995年   151篇
  1994年   144篇
  1993年   191篇
  1992年   129篇
  1991年   127篇
  1990年   114篇
  1989年   134篇
  1988年   131篇
  1987年   167篇
  1986年   156篇
  1985年   174篇
  1984年   186篇
  1983年   155篇
  1982年   142篇
  1981年   150篇
  1980年   153篇
  1979年   145篇
  1978年   136篇
  1977年   119篇
  1976年   135篇
  1975年   91篇
  1974年   88篇
  1973年   88篇
  1971年   81篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
101.
Chromophore-apoprotein interactions were studied with recombinant apoproteins, oat phytochrome (phyA) and CphB of the cyanobacterium Calothrix PCC7601, which were both incubated with the bilin compounds biliverdin (BV) IXalpha, phycocyanobilin (PCB) and the 3'-methoxy derivative of PCB. Previously it was shown that CphB and its homolog in Calothrix, CphA, show strong sequence similarities with each other and with the phytochromes of higher and lower plants, despite the fact that CphB carries a leucine instead of a cysteine at the chromophore attachment position and thus holds the chromophore only noncovalently. CphA binds tetrapyrrole chromophores in a covalent, phytochrome-like manner. For both eyanobacterial phytochromes, red and far-red light-induced photochemistry has been reported. Thus, the role of the binding site of CphB in directing the photochemistry of noncovalently bound tetrapyrroles was analyzed in comparison with the apoprotein from phyA phytochrome. Both the aforementioned compounds, which were used as chromophores, are not able to form covalent bonds with a phytochrome-type apoprotein because of their chemical structure (vinyl group at position 3 or methoxy group at position 3'). The BV adducts of both apoproteins showed phytochrome-like photochemistry (formation of red and far-red-absorbing forms of phytochrome [P(r) and P(fr) forms]). However, incubation of the oat apophytochrome with BV primarily yields a 700 nm form from which the P(r)-P(fr) photochemistry can be initiated and to which the system relaxes in the dark after illumination. The results for CphB were compared with a CphB mutant where the chromophore-binding cysteine had been introduced, which, upon incubation with PCB, shows spectral properties nearly identical with its (covalently binding) CphA homolog. A comparison of the spectral properties (P(r) and P(fr) forms) of all the PCB- and BV-containing chromoproteins reveals that the binding site of the cyanobacterial apoprotein is better suited than the plant (oat) phytochrome to noncovalently incorporate the chromophore and to regulate its photochemistry. Our findings support the proposal that the recently identified phytochrome-like prokaryotic photoreceptors, which do not contain a covalently bound chromophore, may trigger a light-induced physiological response.  相似文献   
102.
The synthesis and structure of an acetal protected 10-membered cyclic enediyne-1,2-diol rac-10 is reported. The conformational constrain of the unsaturated macrocycle by the acetal protection group prevents the thermal cyclization reaction of the endiyne during synthesis and purification.  相似文献   
103.
On-line coupling continuous-flow liquid membrane extraction (CFLME) with HPLC, a novel automatic system was developed for the determination of sulfonylurea herbicides in water. After an automatic trace-enrichment process by CFLME, which is the combination of continuous flow liquid-liquid extraction and support liquid membrane (SLM) extraction, the target analytes were concentrated in 50 microl of 0.2 M Na2CO3-NaHCO3 (pH 10.0) buffer. The concentrated sample solutions were injected directly onto a C18 analytical column with a valve, and detected at 240 nm with a diode array detector. Metsulfuron methyl (MSM), and DPX-A 7881 were baseline separated with a mobile phase consisting of methanol and 67 mM KH2PO4-Na2HPO4 (pH 5.91) buffer (45+55, v+v) at a flow-rate of 1.0 ml min(-1). With an enrichment time of 10 min and enrichment sample volume of 20 ml, the enrichment factors and detection limits are 100 and 0.05 microg l(-1) for MSM, and 96 and 0.1 microg l(-1) for DPX-A 7881, respectively. The linear range and precision (RSD) are 0.1-50 microg l(-1) and 7.0% for MSM, and 0.2-50 microg l(-1) and 9.2% for DPX-A 7881, respectively. This proposed method was applied to determine MSM and DPX-A 7881 in seawater, tap water, and bottled mineral water with spiked recoveries in the range of 83-95% for MSM and 88-100% for DPX-A 7881, respectively.  相似文献   
104.
105.
106.
Calcium carbonate (vaterite) nanoparticles of 20-60 nm size were obtained without stabilizing tensides by heating a dispersion of calcium bicarbonate (CaHCO(3)) in ethylene glycol for 30 minutes at 40 to 100 °C.  相似文献   
107.
The electronic structures of the native Mn(4)O(x)Ca cluster and the biosynthetically substituted Mn(4)O(x)Sr cluster of the oxygen evolving complex (OEC) of photosystem II (PSII) core complexes isolated from Thermosynechococcus elongatus, poised in the S(2) state, were studied by X- and Q-band CW-EPR and by pulsed Q-band (55)Mn-ENDOR spectroscopy. Both wild type and tyrosine D less mutants grown photoautotrophically in either CaCl(2) or SrCl(2) containing media were measured. The obtained CW-EPR spectra of the S(2) state displayed the characteristic, clearly noticeable differences in the hyperfine pattern of the multiline EPR signal [Boussac et al. J. Biol. Chem.2004, 279, 22809-22819]. In sharp contrast, the manganese ((55)Mn) ENDOR spectra of the Ca and Sr forms of the OEC were remarkably similar. Multifrequency simulations of the X- and Q-band CW-EPR and (55)Mn-pulsed ENDOR spectra using the Spin Hamiltonian formalism were performed to investigate this surprising result. It is shown that (i) all four manganese ions contribute to the (55)Mn-ENDOR spectra; (ii) only small changes are seen in the fitted isotropic hyperfine values for the Ca(2+) and Sr(2+) containing OEC, suggesting that there is no change in the overall spin distribution (electronic coupling scheme) upon Ca(2+)/Sr(2+) substitution; (iii) the changes in the CW-EPR hyperfine pattern can be explained by a small decrease in the anisotropy of at least two hyperfine tensors. It is proposed that modifications at the Ca(2+) site may modulate the fine structure tensor of the Mn(III) ion. DFT calculations support the above conclusions. Our data analysis also provides strong support for the notion that in the S(2) state the coordination of the Mn(III) ion is square-pyramidal (5-coordinate) or octahedral (6-coordinate) with tetragonal elongation. In addition, it is shown that only one of the currently published OEC models, the Siegbahn structure [Siegbahn, P. E. M. Acc. Chem. Res.2009, 42, 1871-1880, Pantazis, D. A. et al. Phys. Chem. Chem. Phys.2009, 11, 6788-6798], is consistent with all data presented here. These results provide important information for the structure of the OEC and the water-splitting mechanism. In particular, the 5-coordinate Mn(III) is a potential site for substrate 'water' (H(2)O, OH(-)) binding. Its location within the cuboidal structural unit, as opposed to the external 'dangler' position, may have important consequences for the mechanism of O-O bond formation.  相似文献   
108.
The knowledge on the mechanisms by which blue light (BL) is sensed by diverse and numerous organisms, and of the physiological responses elicited by the BL photoreceptors, has grown remarkably during the last two decades. The basis for this "blue revival" was set by the identification and molecular characterization of long sought plant BL sensors, employing flavins as chromophores, chiefly cryptochromes and phototropins. The latter photosensors are the foundation members of the so-called light, oxygen, voltage (LOV)-protein family, largely spread among archaea, bacteria, fungi and plants. The accumulation of sequenced microbial genomes during the last years has added the BLUF (Blue Light sensing Using FAD) family to the BL photoreceptors and yielded the opportunity for intense "genome mining," which has presented to us the intriguing wealth of BL sensing in prokaryotes. In this contribution we provide an update of flavin-based BL sensors of the LOV and BLUF type, from prokaryotic microorganisms, with special emphasis to their light-activation pathways and molecular signal-transduction mechanisms. Rather than being a fully comprehensive review, this research collects the most recent discoveries and aims to unveil and compare signaling pathways and mechanisms of BL sensors.  相似文献   
109.
Air-stable and readily available ruthenium benzylidene complexes of the general type [RuCl2(=CHPh)(L)(L')] (L, L' = PCy3 and/or N-heterocyclic carbene) constitute a new class of catalyst precursors for atom-transfer radical polymerization (ATRP) of methyl methacrylate and styrene, and provide an unprecedented example for the involvement of ruthenium alkylidenes in radical reactions. They promote the polymerization of various monomers with good to excellent yields, and in a controlled way with methyl methacrylate and styrene. Variations of their basic structural motif provide insights into the essential parameters responsible for catalytic activity. The ligands L (PCy3 and/or N-heterocyclic carbene) turned out to play a particularly important role in determining the rate of the polymerizations. A similarly pronounced influence is exerted by the substituents on the N-heterocyclic carbene. Our results indicate that the catalysts decompose quickly under ATRP conditions, and polymerizations are mediated by both [RuCl2(=CHPh)(L)(L')] complexes and ruthenium species bereft of the benzylidene moiety, through a pathway in which both tricyclohexylphosphane and/or N-heterocyclic carbene ligands remain bound to the metal center. Polymerization of n-butyl acrylate and vinyl acetate is not controlled and most probably takes place through a redox-initiated free-radical process.  相似文献   
110.
The reactions of the Mn(III)(3) and Mn(II)Mn(III)(2) complexes [Mn(3)O(O(2)CEt)(6)(py)(3)][ClO(4)] and [Mn(3)O(O(2)CEt)(6)(py)(3)] with pyridine-2,6-dimethanol (pdmH(2)) afford the mixed-valence Mn(II)(6)Mn(III)(2) octanuclear complex [Mn(8)O(2)(py)(4)(O(2)CEt)(8)(L)(2)][ClO(4)](2) (1) and the Mn(II)(7)Mn(III)(2) enneanuclear complex [Mn(9)(O(2)CEt)(12)(pdm)(pdmH)(2)(L)(2)] (2), respectively. Both compounds contain a novel pentadentate ligand, the dianion of (6-hydroxymethylpyridin-2-yl)-(6-hydroxymethylpyridin-2-ylmethoxy)methanol (LH(2)), which is the hemiacetal formed in situ from the Mn-assisted oxidation of pdmH(2). Complex 1 crystallizes in the monoclinic space group P2(1)/n with the following cell parameters at -160 degrees C: a = 16.6942(5) A, b = 13.8473(4) A, c = 20.0766(6) A, beta = 99.880(1) degrees, V = 4572.27 A(3), and Z = 2, R (R(w)) = 4.78 (5.25). Complex 2.0.2MeCN crystallizes in the triclinic space group Ponemacr; with the following cell parameters at -157 degrees C: a = 12.1312(4) A, b = 18.8481(6) A, c = 23.2600(7) A, alpha = 78.6887(8) degrees, beta = 77.9596(8) degrees, gamma = 82.3176(8) degrees, V = 5076.45 A(3), and Z = 2, R (R(w)) = 4.12 (4.03). Both complexes are new structural types comprising distorted-cubane units linked together, albeit in two very different ways. In addition, complex 2 features three distinct binding modes for the chelating ligands derived from deprotonated pdmH(2). Complexes 1 and 2 were characterized by variable-temperature ac and dc magnetic susceptibility measurements and found to possess spin ground states of 0 and 11/2, respectively. Least-squares fitting of the reduced magnetization data gave S = 11/2, g = 2.0, and D = -0.11 cm(-1) for complex 2, where D is the axial zero-field splitting parameter. Direct current magnetization versus field studies on 2 at <1 K show hysteresis behavior at <0.3 K, establishing 2 as a new single-molecule magnet. Magnetization decay measurements gave an effective barrier to magnetization relaxation of U(eff) = 3.1 cm(-1) = 4.5 K.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号