首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1376篇
  免费   61篇
  国内免费   14篇
化学   954篇
晶体学   11篇
力学   41篇
数学   260篇
物理学   185篇
  2024年   3篇
  2023年   9篇
  2022年   45篇
  2021年   55篇
  2020年   26篇
  2019年   29篇
  2018年   29篇
  2017年   20篇
  2016年   58篇
  2015年   46篇
  2014年   56篇
  2013年   89篇
  2012年   93篇
  2011年   113篇
  2010年   41篇
  2009年   52篇
  2008年   81篇
  2007年   91篇
  2006年   76篇
  2005年   59篇
  2004年   52篇
  2003年   58篇
  2002年   32篇
  2001年   25篇
  2000年   17篇
  1999年   13篇
  1998年   9篇
  1997年   6篇
  1996年   16篇
  1995年   10篇
  1994年   13篇
  1993年   8篇
  1992年   9篇
  1991年   12篇
  1990年   10篇
  1989年   10篇
  1988年   8篇
  1987年   6篇
  1986年   4篇
  1985年   8篇
  1984年   10篇
  1983年   5篇
  1982年   10篇
  1981年   3篇
  1980年   7篇
  1979年   3篇
  1978年   3篇
  1977年   6篇
  1975年   2篇
  1974年   2篇
排序方式: 共有1451条查询结果,搜索用时 0 毫秒
61.
The syntheses, spectral UV–Vis, NMR, and electrochemical as well as photocatalytic properties of novel magnesium(II) and zinc(II) symmetrical sulfanyl porphyrazines with 2-(morpholin-4-yl)ethylsulfanyl peripheral substituents are presented. Both porphyrazine derivatives were synthesized in cyclotetramerization reactions and subsequently embedded on the surface of commercially available P25 titanium(IV) oxide nanoparticles. The obtained macrocyclic compounds were broadly characterized by ESI MS spectrometry, 1D and 2D NMR techniques, UV–Vis spectroscopy, and subjected to electrochemical studies. Both hybrid materials, consisting of porphyrazine derivatives embedded on the titanium(IV) oxide nanoparticles’ surface, were characterized in terms of particle size and distribution. Next, they were subjected to photocatalytic studies with 1,3-diphenylisobenzofuran, a known singlet oxygen quencher. The applicability of the obtained hybrid material consisting of titanium(IV) oxide P25 nanoparticles and magnesium(II) porphyrazine derivative was assessed in photocatalytic studies with selected active pharmaceutical ingredients, such as diclofenac sodium salt and ibuprofen.  相似文献   
62.
A new base metal iron-cobalt dyad has been obtained by connection between a heteroleptic tetra-NHC iron(II) photosensitizer combining a 2,6-bis[3-(2,6-diisopropylphenyl)imidazol-2-ylidene]pyridine with 2,6-bis(3-methyl-imidazol-2-ylidene)-4,4′-bipyridine ligand, and a cobaloxime catalyst. This novel iron(II)-cobalt(III) assembly has been extensively characterized by ground- and excited-state methods like X-ray crystallography, X-ray absorption spectroscopy, (spectro-)electrochemistry, and steady-state and time-resolved optical absorption spectroscopy, with a particular focus on the stability of the molecular assembly in solution and determination of the excited-state landscape. NMR and UV/Vis spectroscopy reveal dissociation of the dyad in acetonitrile at concentrations below 1 mM and high photostability. Transient absorption spectroscopy after excitation into the metal-to-ligand charge transfer absorption band suggests a relaxation cascade originating from hot singlet and triplet MLCT states, leading to the population of the 3MLCT state that exhibits the longest lifetime. Finally, decay into the ground state involves a 3MC state. Attachment of cobaloxime to the iron photosensitizer increases the 3MLCT lifetime at the iron centre. Together with the directing effect of the linker, this potentially makes the dyad more active in photocatalytic proton reduction experiments than the analogous two-component system, consisting of the iron photosensitizer and Co(dmgH)2(py)Cl. This work thus sheds new light on the functionality of base metal dyads, which are important for more efficient and sustainable future proton reduction systems.  相似文献   
63.
Redox-active Cu(II) complexes are able to form reactive oxygen species (ROS) in the presence of oxygen and reducing agents. Recently, Faller et al. reported that ROS generation by Cu(II) ATCUN complexes is not as high as assumed for decades. High complex stability results in silencing of the Cu(II)/Cu(I) redox cycle and therefore leads to low ROS generation. In this work, we demonstrate that an exchange of the α-amino acid Gly with the β-amino acid β-Ala at position 2 (Gly2→β-Ala2) of the ATCUN motif reinstates ROS production (OH and H2O2). Potentiometry, cyclic voltammetry, EPR spectroscopy and DFT simulations were utilized to explain the increased ROS generation of these β-Ala2-containing ATCUN complexes. We also observed enhanced oxidative cleavage activity towards plasmid DNA for β-Ala2 compared to the Gly2 complexes. Modifications with positively charged Lys residues increased the DNA affinity through electrostatic interactions as determined by UV/VIS, fluorescence, and CD spectroscopy, and consequently led to a further increase in nuclease activity. A similar trend was observed regarding the cytotoxic activity of the complexes against several human cancer cell lines where β-Ala2 peptide complexes had lower IC50 values compared to Gly2. The higher cytotoxicity could be attributed to an increased cellular uptake as determined by ICP-MS measurements.  相似文献   
64.
Metal salen complexes are one of the most frequently used catalysts in enantioselective organic synthesis. In the present work, we compare a series of ionization methods that can be used for the mass spectral analysis of two types of metalosalens: ionic complexes (abbreviated as Com+X?) and neutral complexes (NCom). These methods include electron ionization and field desorption (FD) which can be applied to pure samples and atmospheric pressure ionization techniques: electrospray ionization (ESI), atmospheric pressure chemical ionization (APCI) and atmospheric pressure photoionization (APPI) which are suitable for solutions. We found that FD is a method of choice for recording molecular ions of the complexes containing even loosely bonded ligands. The results obtained using atmospheric pressure ionization methods show that the results depend mainly on the structure of metal salen complex and the ionization method. In ESI spectra, Com+ ions were observed, while in APCI and APPI spectra both Com+ and [Com + H]+ ions are observed in the ratio depending on the structure of the metal salen complex and the solvent used in the analysis. For complexes with tetrafluoroborate counterion, an elimination of BF3 took place, and ions corresponding to complexes with fluoride counterion were observed. Experiments comparing the relative sensitivity of ESI, APCI and APPI (with and without a dopant) methods showed that for the majority of the studied complexes ESI is the most sensitive one; however, the sensitivity of APCI is usually less than two times lower and for some compounds is even higher than the sensitivity of ESI. Both methods show very high linearity of the calibration curve in a range of about 3 orders of magnitude of the sample concentration. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
65.
DNA double strand breaks (DSBs) are deadly lesions that can lead to genetic defects and cell apoptosis. Techniques that directly detect DNA DSBs include scanning electron microscopy, atomic force microscopy (AFM), and fluorescence based approaches. While these techniques can be used to identify DSBs they provide no information on the molecular events occurring at the break. Tip‐enhanced Raman scattering (TERS) can provide molecular information from DNA at the nanoscale and in combination with AFM provides a new way to visualize and characterize the molecular structure of DSBs. DSBs result from cleavage at the 3’‐ and 5’‐bonds of deoxyribose upon exposure to UVC radiation based on the observation of P? O? H and methyl/methylene deformation modes enhanced in the TERS spectra. It is hypothesized that strand fragments are hydrogen‐terminated at the lesion, indicating the action of free radicals during photon exposure.  相似文献   
66.
The relative stability of graphite and diamond is revisited with hybrid density functional theory calculations. The electronic energy of diamond is computed to be more negative by 1.1 kJ mol?1 than that of graphite at T=0 K and in the absence of external pressure. Graphite gains thermodynamic stability over diamond at 298 K only because of the differences in the zero‐point energy, specific heat, and entropy terms for both polymorphs.  相似文献   
67.
Thioridazine is a well-known dopamine-antagonist drug with a wide range of pharmacological properties ranging from neuroleptic to antimicrobial and even anticancer activity. Thioridazine is a critical component of a promising multi-drug therapy against M. tuberculosis. Amongst the various proposed mechanisms of action, the cell membrane-mediated one is peculiarly tempting due to the distinctive feature of phenothiazine drug family to accumulate in selected body tissues. In this study, we employ long-scale molecular dynamics simulations to investigate the interactions of three different concentrations of thioridazine with zwitterionic and negatively charged model lipid membranes. Thioridazine partitions into the interfacial region of membranes and modifies their structural and dynamic properties, however dissimilarly so at the highest membrane-occurring concentration, that appears to be obtainable only for the negatively charged bilayer. We show that the origin of such changes is the drug induced decrease of the interfacial tension, which ultimately leads to the significant membrane expansion. Our findings support the hypothesis that the phenothiazines therapeutic activity may arise from the drug–membrane interactions, and reinforce the wider, emerging view of action of many small, bioactive compounds.  相似文献   
68.
In the presented study, the sulfur dioxide sorption properties of fly ash zeolite X were investigated. Sorption tests were performed on fly ash zeolite samples that were not prepared specially for sorption, in addition to dried samples and samples in the presence of water vapor. The samples saturated with water vapor showed the highest sorption capacity. The sorption capacity of the samples additionally dried prior to the sorption experiment was higher than that of the samples that were not specially prepared for the sorption test. Regeneration tests indicated relatively good regeneration properties. The obtained results were described with the use of Langmuir, Sips, and Dubinin–Astakhov models, with the Dubinin–Astakhov model providing the best fit.  相似文献   
69.
Recently, fluorenylmethoxycarbonyl (Fmoc) amino acids (e.g. Fmoc–tyrosine or Fmoc–phenylalanine) have attracted growing interest in biomedical research and industry, with special emphasis directed towards the design and development of novel effective hydrogelators, biomaterials or therapeutics. With this in mind, a systematic knowledge of the structural and supramolecular features in recognition of those properties is essential. This work is the first comprehensive summary of noncovalent interactions combined with a library of supramolecular synthon patterns in all crystal structures of amino acids with the Fmoc moiety reported so far. Moreover, a new Fmoc‐protected amino acid, namely, 2‐{[(9H‐fluoren‐9‐ylmethoxy)carbonyl](methyl)amino}‐3‐{4‐[(2‐hydroxypropan‐2‐yl)oxy]phenyl}propanoic acid or N‐fluorenylmethoxycarbonyl‐O‐tert‐butyl‐N‐methyltyrosine, Fmoc‐N‐Me‐Tyr(t‐Bu)‐OH, C29H31NO5, was successfully synthesized and the structure of its unsolvated form was determined by single‐crystal X‐ray diffraction. The structural, conformational and energy landscape was investigated in detail by combined experimental and in silico approaches, and further compared to N‐Fmoc‐phenylalanine [Draper et al. (2015). CrystEngComm, 42 , 8047–8057]. Geometries were optimized by the density functional theory (DFT) method either in vacuo or in solutio. The polarizable conductor calculation model was exploited for the evaluation of the hydration effect. Hirshfeld surface analysis revealed that H…H, C…H/H…C and O…H/H…O interactions constitute the major contributions to the total Hirshfeld surface area in all the investigated systems. The molecular electrostatic potentials mapped over the surfaces identified the electrostatic complementarities in the crystal packing. The prediction of weak hydrogen‐bonded patterns via Full Interaction Maps was computed. Supramolecular motifs formed via C—H…O, C—H…π, (fluorenyl)C—H…Cl(I), C—Br…π(fluorenyl) and C—I…π(fluorenyl) interactions are observed. Basic synthons, in combination with the Long‐Range Synthon Aufbau Modules, further supported by energy‐framework calculations, are discussed. Furthermore, the relevance of Fmoc‐based supramolecular hydrogen‐bonding patterns in biocomplexes are emphasized, for the first time.  相似文献   
70.
Derivatives of pyrimidine‐2(1H)‐selenone are a group of compounds with very strong antimicrobial activity. In order to study the effect of the position of the methoxy substituent on biological activity, molecular geometry and intermolecular interactions in the crystal, three derivatives were prepared and evaluated with respect to their antimicrobial activities, and their crystal structures were determined by X‐ray diffraction. The investigated compounds, namely, 1‐(X‐methoxyphenyl)‐4‐methyl‐6‐phenylpyrimidine‐2(1H)‐selenones (X = 2, 3 and 4 for 1 , 2 and 3 , respectively), C18H16N2OSe, showed very strong activity against selected strains of Gram‐positive bacteria and fungi. Two compounds, 1 and 2 , crystallize in the monoclinic space group P21/c, while 3 crystallizes in the space group P21/n; 1 has two molecules in the asymmetric unit and the other two ( 2 and 3 ) have one molecule. The geometries of the investigated compounds differ slightly in the mutual orientations of the aromatic and pyrimidineselenone rings. The O atom in 1 stabilizes the conformation of the molecules via intramolecular C—H…O hydrogen bonding. The packing of molecules is determined by weak C—H…N and C—H…Se intermolecular interactions and additionally in 1 and 2 by C—H…O intermolecular interactions. The introduction of the methoxy substituent results in greater selectivity of the investigated compounds.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号