首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1314篇
  免费   32篇
  国内免费   4篇
化学   791篇
晶体学   7篇
力学   83篇
数学   117篇
物理学   352篇
  2022年   8篇
  2021年   15篇
  2020年   26篇
  2019年   17篇
  2018年   9篇
  2017年   11篇
  2016年   32篇
  2015年   21篇
  2014年   17篇
  2013年   45篇
  2012年   57篇
  2011年   72篇
  2010年   34篇
  2009年   41篇
  2008年   62篇
  2007年   58篇
  2006年   48篇
  2005年   46篇
  2004年   47篇
  2003年   32篇
  2002年   27篇
  2001年   22篇
  2000年   24篇
  1999年   17篇
  1998年   11篇
  1997年   11篇
  1996年   26篇
  1995年   15篇
  1994年   16篇
  1993年   21篇
  1992年   22篇
  1991年   41篇
  1990年   20篇
  1989年   22篇
  1988年   21篇
  1987年   16篇
  1986年   11篇
  1985年   22篇
  1984年   26篇
  1983年   25篇
  1982年   21篇
  1981年   13篇
  1980年   21篇
  1979年   10篇
  1978年   24篇
  1977年   12篇
  1976年   16篇
  1975年   13篇
  1972年   8篇
  1968年   8篇
排序方式: 共有1350条查询结果,搜索用时 31 毫秒
51.
52.
Host–guest complexes are formed by the creation of multiple noncovalent bonds between a large molecule (the host) and smaller molecule(s) or ion(s) (the guest(s)). Ion‐mobility separation coupled with mass spectrometry nowadays represents an ideal tool to assess whether the host–guest complexes, when transferred to the gas phase upon electrospray ionization, possess an exclusion or inclusion nature. Nevertheless, the influence of the solution conditions on the nature of the observed gas‐phase ions is often not considered. In the specific case of inclusion complexes, kinetic considerations must be taken into account beside thermodynamics; the guest ingression within the host cavity can be characterized by slow kinetics, which makes the complexation reaction kinetically driven on the timescale of the experiment. This is particularly the case for the cucurbituril family of macrocyclic host molecules. Herein, we selected para‐phenylenediamine and cucurbit[6]uril as a model system to demonstrate, by means of ion mobility and collision‐induced dissociation measurements, that the inclusion/exclusion topology ratio varies as a function of the equilibration time in solution prior to the electrospray process.  相似文献   
53.
54.
The first highly asymmetric catalytic synthesis of densely functionalized dihydrobenzofurans is reported, which starts from ortho-hydroxy-containing para-quinone methides. The reaction relies on an unprecedented formal [4+1]-annulation of these quinone methides with allenoates in the presence of a commercially available chiral phosphine catalyst. The chiral dihydrobenzofurans were obtained as single diastereomers in yields up to 90 % and with enantiomeric ratios up to 95:5.  相似文献   
55.
Metallamacrocylic tetraruthenium complexes were generated by treatment of 1,4‐divinylphenylene‐bridged diruthenium complexes with functionalized 1,3‐benzene dicarboxylic acids and characterized by HR ESI‐MS and multinuclear NMR spectroscopy. Every divinylphenylene diruthenium subunit is oxidized in two consecutive one‐electron steps with half‐wave potential splittings in the range of 250 to 330 mV. Additional, smaller redox‐splittings between the +/2+ and 0/+ and the 3+/4+ and 2+/3+ redox processes, corresponding to the first and the second oxidations of every divinylphenylene diruthenium entity, are due to electrostatic effects. The lack of electronic coupling through bond or through space is explained by the nodal properties of the relevant molecular orbitals and the lateral side‐by‐side arrangement of the divinylphenylene linkers. The polyelectrochromic behavior of the divinylphenylene diruthenium precursors is retained and even amplified in these metallamacrocyclic structures. EPR studies down to T=4 K indicate that the dications 1‐H2+ and 1‐OBu2+ are paramagnetic. The dications and the tetracation of macrocycle 3‐H display intense (dications) or weak ( 3‐H4+ ) EPR signals. Quantum chemical calculations indicate that the four most stable conformers of the macrocycles are largely devoid of strain. Bond parameters, energies as well as charge and spin density distributions of model macrocycle 5‐HMe were calculated for the different charge and spin states.  相似文献   
56.
This article deals with the Kumada Catalyst Transfer Polycondensation (KCTP) of 4,7‐dioctylbenzo[2,1‐b:3,4‐b']dithiophene ( BDP‐Oct ) using Ni(II) catalyst or In/cat combination. A combination of MALDI MS, GPC, and 31P NMR spectroscopy is used to reveal the failure of the KCTP of this particular monomer. Intermolecular transfer reactions to monomer appeared to prevent the formation of polymer. This result is remarkable, since isomeric benzo[1,2‐b:4,5‐b']dithiophene polymerizes in a controlled way. The presence of a “non‐aromatic double bond” in annulated monomers is discussed. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 1706–1712  相似文献   
57.
Abstract

Novel dithiolene metal complexes, some of which absorb in the near infrared, and tetrathiafulvalenes, in particular tetraiodotetrathia- fulvalene, have been prepared, and their magnetic properties studied.  相似文献   
58.
Sodium, potassium, rubidium, caesium, ammonium and tetramethylammonium tetraphenylborates were studied by both positive and negative ion electrospray mass spectrometry. An affinity order of Cs+ > Rb+ > K+ ~ Na+ was obtained. The results obtained were compared with both calculations and solid-state structures, where available. The previously reported high affinity of caesium for tetraphenylborate concluded from NMR experiments was confirmed for the gas phase. The affinity does not appear to result from steric effects and a cation–pi interaction seems likely. In the positive ion mode, a unique acetonitrile complex of NaBPh4 was observed.  相似文献   
59.
60.
FT‐IR spectroscopic and thermodynamic measurements were designed to explore the effect of a macromolecular crowder, dextran, on the temperature and pressure‐dependent phase diagram of the protein Ribonuclease A (RNase A), and we compare the experimental data with approximate theoretical predictions based on configuration entropy. Exploring the crowding effect on the pressure‐induced unfolding of proteins provides insight in protein stability and folding under cell‐like dense conditions, since pressure is a fundamental thermodynamic variable linked to molecular volume. Moreover, these studies are of relevance for understanding protein stability in deep‐sea organisms, which have to cope with pressures in the kbar range. We found that not only temperature‐induced equilibrium unfolding of RNase A, but also unfolding induced by pressure is markedly prohibited in the crowded dextran solutions, suggesting that crowded environments such as those found intracellularly, will also oppress high‐pressure protein unfolding. The FT‐IR spectroscopic measurements revealed a marked increase in unfolding pressure of 2 kbar in the presence of 30 wt % dextran. Whereas the structural changes upon thermal unfolding of the protein are not significantly influenced in the presence of the crowding agent, through stabilization by dextran the pressure‐unfolded state of the protein retains more ordered secondary structure elements, which seems to be a manifestation of the entropic destabilization of the unfolded state by crowding.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号