首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2070篇
  免费   58篇
  国内免费   5篇
化学   1533篇
晶体学   5篇
力学   30篇
数学   233篇
物理学   332篇
  2024年   8篇
  2023年   15篇
  2022年   24篇
  2021年   50篇
  2020年   61篇
  2019年   35篇
  2018年   30篇
  2017年   23篇
  2016年   62篇
  2015年   70篇
  2014年   62篇
  2013年   143篇
  2012年   103篇
  2011年   153篇
  2010年   102篇
  2009年   86篇
  2008年   114篇
  2007年   108篇
  2006年   133篇
  2005年   132篇
  2004年   91篇
  2003年   80篇
  2002年   77篇
  2001年   18篇
  2000年   16篇
  1999年   19篇
  1998年   20篇
  1997年   17篇
  1996年   26篇
  1995年   20篇
  1994年   17篇
  1993年   17篇
  1992年   18篇
  1991年   11篇
  1990年   23篇
  1989年   5篇
  1988年   15篇
  1987年   18篇
  1986年   13篇
  1985年   5篇
  1984年   7篇
  1983年   10篇
  1982年   5篇
  1981年   6篇
  1980年   10篇
  1979年   10篇
  1978年   5篇
  1977年   8篇
  1976年   9篇
  1973年   4篇
排序方式: 共有2133条查询结果,搜索用时 15 毫秒
971.
972.
The role of B(CN)(4)(-) (Bison) as a component of battery electrolytes is addressed by investigating the ionic conductivity and phase behaviour of ionic liquids (ILs), ion association mechanisms, and the electrochemical stability and cycling properties of LiBison based electrochemical cells. For C(4)mpyrBison and C(2)mimBison ILs, and mixtures thereof, high ionic conductivities (3.4 ≤σ(ion)≤ 18 mS cm(-1)) are measured, which together with the glass transition temperatures (-80 ≤T(g)≤-76 °C) are found to shift systematically for most compositions. Unfortunately, poor solubility of LiBison in these ILs hinders their use as solvents for lithium salts, although good NaBison solubility offers an alternative application in Na(+) conducting electrolytes. The poor IL solubility of LiBison is predicted to be a result of a preferred monodentate ion association, according to first principles modelling, supported by Raman spectroscopy. The solubility is much improved in strongly Li(+) coordinating oligomers, for example polyethylene glycol dimethyl ether (PEGDME), with the practical performance tested in electrochemical cells. The electrolyte is found to be stable in Li/LiFePO(4) coin cells up to 4 V vs. Li and shows promising cycling performance, with a capacity retention of 99% over 22 cycles.  相似文献   
973.
The structural evolution of sol-gel derived lead zirconate titanate (PZT) precursor films during and after physical drying was investigated by transmission electron microscopy (TEM), electron energy loss spectroscopy (EELS), selected area electron diffraction (SAED), and time-resolved X-ray diffraction (XRD). Films were deposited from initial 0.3 mol/dm(3) precursor sols with varying hydrolysis ratios. Zr-rich grains of 1-10 nm size, embedded in a Pb-, Zr-, and Ti-containing amorphous matrix were found in as-dried films. The Zr-rich regions were crystalline at hydrolysis ratios [H(2)O]/[PZT] < 27.6, and amorphous at ratios > 100. X-ray diffraction analysis of PZT and zirconia sols revealed that the crystalline nanoparticles in both sols are identical and are probably composed of nanosized zirconium oxoacetate-like clusters. This study demonstrates that time-resolved X-ray diffraction combined with electron energy loss spectroscopy mapping is a powerful tool to monitor the nanoscale structural evolution of sol-gel derived thin films.  相似文献   
974.
The application range and validity of two new NMR sequences (hereafter called sequence 1 and sequence 2) for the study of water-in-oil emulsions (w/o) has been assessed using model emulsions and comparison with results obtained by a commercial apparatus (Turbiscan). These new NMR sequences allow to determine the brine profile i.e. the vertical variations of the dispersed phase content (brine) in the NMR tube. Measuring these parameters as a function of time allows to monitor the separation (sedimentation and coalescence rate) between oil and water. The results obtained on model water-in-oil emulsions with both NMR sequences are consistent and meaningful for both stable and coalescing emulsions and are similar, even if not strictly identical, to the ones obtained with the Turbiscan. It also appears that the second NMR sequence is faster (30s to obtain a profile compared with 3 min for the 1st one in the conditions used in this article) and has a broader application range. Indeed, for these two methods, the oil phase must have a viscosity higher or equal than values which is around 5 mPas for the sequence 2 and 20-25 mPas for the method 1.  相似文献   
975.
Multi‐walled carbon nanotubes (MWCNTs) were compared with poly(3‐octylthiophene) (POT) as ion‐to‐electron transducer in all‐solid‐state potassium ion‐selective electrodes with valinomycin‐based ion‐selective membranes. MWCNTs and POT were mixed with the other components of the potassium ion‐selective membrane cocktail (valinomycin, KTpClPB, o‐NPOE, PVC, THF) which was then applied on a glassy carbon (GC) substrate to prepare single‐piece ion‐selective electrodes (SPISEs). Results from potentiometric and impedance measurements showed that the MWCNT‐based electrodes have a more reproducuible standard potential and a lower overall impedance than the electrodes based on POT. Both types of electrodes showed similar sensitivity to potassium ions and no redox sensitivity.  相似文献   
976.
An experimentally simple sequential one-pot RuAAC reaction, affording 1,5-disubstituted 1H-1,2,3-triazoles in good to excellent yields starting from an alkyl halide, sodium azide, and an alkyne, is reported. The organic azide is formed in situ by treating the primary alkyl halide with sodium azide in DMA under microwave heating. Subsequent addition of [RuClCp*(PPh(3))(2)] and the alkyne yielded the desired cycloaddition product after further microwave irradiation.  相似文献   
977.
The thermal reaction of Ru3(CO)12 with ethacrynic acid, 4‐[bis(2‐chlorethyl)amino]benzenebutanoic acid (chlorambucil), or 4‐phenylbutyric acid in refluxing solvents, followed by addition of two‐electron donor ligands (L), gives the diruthenium complexes Ru2(CO)4(O2CR)2L2 ( 1 : R = CH2O‐C6H2Cl2‐COC(CH2)C2H5, L = C5H5N; 2 : R = CH2O‐C6H2Cl2‐COC(CH2)C2H5, L = PPh3; 3 : R = C3H6‐C6H4‐N(C2H4‐Cl)2, L = C5H5N; 4 : R = C3H6‐C6H4‐N(C2H4‐Cl)2, L = PPh3; 5 : R = C3H6‐C6H5, L = C5H5N; 6 : R = C3H6‐C6H5, L = PPh3). The single‐crystal structure analyses of 2 , 3 , 5 and 6 reveal a dinuclear Ru2(CO)4 sawhorse structure, the diruthenium backbone being bridged by the carboxylato ligands, while the two L ligands occupy the axial positions of the diruthenium unit.  相似文献   
978.
Ti films sputtered on transparent fluorine-doped tin oxide glass substrates were anodized in fluoride-containing organic electrolyte in the presence of H2O. In this work, anodic TiO2 nanotubes (ATNs) as long as 9.2 ± 0.3 μm were obtained with high growth rate of 0.64 ± 0.3 μm min?1. We demonstrated the optimum anodization conditions for ATN growth on foreign substrates, were within the range of 0.3–0.5% (wt) NH4F, with 3–5% (vol) H2O at 60 V. XPS and ICP-MS were utilized to elucidate the increase of thickness and volume expansion obtained from the sputtered Ti film to their ATN forms. The ATN films exhibited excellent uniformity and adhesion to the substrates.  相似文献   
979.
Low-coverage adsorption properties (Henry constants, adsorption enthalpy, and entropy) of linear and branched alkanes (C3-C8) on zeolite MCM-22 were determined using the chromatographic technique at temperatures between 420 and 540 K. It was found that adsorption enthalpy and entropy of linear alkanes vary in a nonmonotonic way with carbon number. The adsorption behavior of alkanes was rationalized on the basis of the pore geometry. Short molecules prefer to reside in the pockets of the MCM-22 supercage, where they maximize energetic interaction with the zeolite. Longer molecules reside in the larger central part of the supercage. For carbon numbers up to six, singly branched alkanes are selectively adsorbed over their linear counterparts. This preference originates from the entropic advantage of singly branched molecules inside MCM-22 supercages, where these species have high rotational freedom because of their small length.  相似文献   
980.
The linear interaction energy (LIE) method in combination with two different continuum solvent models has been applied to calculate protein-ligand binding free energies for a set of inhibitors against the malarial aspartic protease plasmepsin II. Ligand-water interaction energies are calculated from both Poisson-Boltzmann (PB) and Generalized Born (GB) continuum models using snapshots from explicit solvent simulations of the ligand and protein-ligand complex. These are compared to explicit solvent calculations, and we find close agreement between the explicit water and PB solvation models. The GB model overestimates the change in solvation energy, and this is caused by consistent underestimation of the effective Born radii in the protein-ligand complex. The explicit solvent LIE calculations and LIE-PB, with our standard parametrization, reproduce absolute experimental binding free energies with an average unsigned error of 0.5 and 0.7 kcal/mol, respectively. The LIE-GB method, however, requires a constant offset to approach the same level of accuracy.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号