首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   349篇
  免费   9篇
  国内免费   1篇
化学   316篇
力学   7篇
数学   17篇
物理学   19篇
  2022年   7篇
  2021年   6篇
  2020年   4篇
  2019年   3篇
  2018年   3篇
  2017年   1篇
  2016年   5篇
  2015年   6篇
  2014年   4篇
  2013年   17篇
  2012年   26篇
  2011年   28篇
  2010年   20篇
  2009年   13篇
  2008年   17篇
  2007年   26篇
  2006年   32篇
  2005年   29篇
  2004年   17篇
  2003年   13篇
  2002年   13篇
  2001年   8篇
  2000年   5篇
  1999年   4篇
  1998年   2篇
  1997年   3篇
  1995年   2篇
  1994年   3篇
  1993年   3篇
  1992年   1篇
  1990年   3篇
  1985年   1篇
  1984年   1篇
  1982年   3篇
  1981年   3篇
  1980年   3篇
  1979年   3篇
  1978年   1篇
  1977年   2篇
  1976年   3篇
  1975年   2篇
  1973年   2篇
  1972年   2篇
  1969年   2篇
  1967年   1篇
  1964年   1篇
  1960年   1篇
  1958年   1篇
  1931年   1篇
  1917年   1篇
排序方式: 共有359条查询结果,搜索用时 15 毫秒
351.
NMR is one of the most used techniques to resolve structure of proteins and peptides in solution. However, inconsistencies may occur due to the fact that a polypeptide may adopt more than one conformation. Since the NOE distance bounds and (3)J-values used in such structure determination represent a nonlinear average over the total ensemble of conformers, imposition of NOE or (3)J-value restraints to obtain one unique conformation is not an appropriate procedure in such cases. Here, we show that unrestrained MD simulation of a solute in solution using a high-quality force field yields a conformational ensemble that is largely compatible with the experimental NMR data on the solute. Four 100 ns MD simulations of two forms of a nine-residue beta-peptide in methanol at two temperatures produced conformational ensembles that were used to interpret the NMR data on this molecule and resolve inconsistencies between the experimental NOEs. The protected and unprotected forms of the beta-peptide adopt predominantly a 12/10-helix in agreement with the qualitative interpretation of the NMR data. However, a particular NOE was not compatible with this helix indicating the presence of other conformations. The simulations showed that 3(14)()-helical structures were present in the ensemble of the unprotected form and that their presence correlates with the fulfillment of the particular NOE. Additionally, all inter-hydrogen distances were calculated to compare NOEs predicted by the simulations to the ones observed experimentally. The MD conformational ensembles allowed for a detailed and consistent interpretation of the experimental data and showed the small but specific conformational differences between the protected and unprotected forms of the peptide.  相似文献   
352.
A simultaneous improvement of the diffusion and dielectric properties of the simple point charge (SPC) model for liquid water appears to be very difficult with conventional reparametrization of the commonly used Lennard-Jones and Coulomb interaction functions and without including a self-energy correction in the effective pair-potential as is done in the SPC/E model. Here, a different approach to circumvent this problem is presented. A short-range interaction term, which corrects the oxygen-oxygen energy at small distances by small amounts of energy, was introduced in the nonbonded interaction function. This additional force-field term allows to derive new parameter sets for SPC-like water models that yield better agreement with experimental data on liquid water. Based on previous investigations of the force-field parameter dependence of the water properties of SPC-like models, the necessary parameter changes to obtain a lower diffusion coefficient and a larger dielectric permittivity were specified and accordingly six new models were developed. They all represent an improvement over SPC in terms of structural and diffusional properties, four of them show better dielectric properties also. One model, SPC/S, has been characterized in more detail, and represents most properties of liquid water better than SPC while avoiding the larger discrepancies with experimental values regarding density, thermal compressibility, energy, and free energy of the SPC/E model. We conclude that the use of a simple, short-ranged additional oxygen-oxygen interaction term makes a simultaneous improvement of the diffusion coefficient and the dielectric properties of water feasible.  相似文献   
353.
354.
An amperometric microbial biosensor for highly sensitive and selective determination of p‐nitrophenol (PNP) is reported. The biosensor consisted of PNP‐degrader Arthrobacter sp. JS443 immobilized by entrapment in Nafion polymer deposited on the top of the carbon paste electrode transducer. The biosensor was based on the measurement of the oxidation current of the intermediates 4‐nitrocatechol and 1,2,4‐benzenetriol formed by the highly selective oxidation of PNP by Arthrobacter sp. The sensor signal and response time were optimized with applied potential of +0.4 V (vs. Ag/AgCl reference electrode) and 0.03 mg of cells and operating in pH 7.5, 50 mM citrate‐phosphate buffer at room temperature. When operated at optimized conditions, the Arthrobacter sp.‐based biosensor measured as low as 5 nM (0.7 ppb) of PNP. The biosensor demonstrated excellent selectivity with no interference from phenolic compounds such as 2‐nitrophenol, phenol and 3‐chlorophenol but was interfered by 3‐nitrophenol and 3‐methyl‐4‐nitrophenol. It had good precision and intra‐ and inter‐day reproducibility, accuracy and was stable up to 3 days when stored in buffer at 4 °C. When applied for measurement in water from Lake Elsinore, CA, the results obtained were in excellent agreement with the amounts determined spectrophotometrically.  相似文献   
355.
Here, we present a new generation of nanoscale probes for in vivo monitoring of protease activity by fluorescence resonance energy transfer (FRET). The approach is based on a genetically programmable protein module carrying a fluorescently labeled, protease-specific sequence that can self-assemble onto quantum dots. The protein module was used for real-time detection of human immunodeficiency virus type-1 protease (HIV-1 Pr) activity as well as quantitative assessment of inhibitor efficiency.  相似文献   
356.
Effect of different aspect ratio (length to diameter ratio, L:D) on single polypyrrole (Ppy) nanowire based field effect transistor (FET) sensor for real time pH monitoring was studied. Ppy nanowires with diameters of ~60, ~80 and ~200 nm were synthesized using electrochemical deposition inside anodized aluminium oxide (AAO) template and were assembled using AC dielectrophoretic alignment followed by maskless anchoring on a pair of gold electrodes separated with different gap lengths. Microfabricated gold electrode patterns with gap size between 1 - 4 μm were developed by means of MEMS technique (photolithography). Using field effect transistor geometry with pair of microfabricated gold contact electrodes serving as a source and a drain, and a platinum (Pt) mesh (anchored in a microfluidic channel) was used as a gate electrode. When effect of different aspect ratio of the nanowire were compared, higher sensitivity was recorded for higher aspect ratio. The sensitivity was further improved by modulating the gate potential. These FET sensors based on single polypyrrole nanowire exhibited excellent and tunable sensitivity towards pH variations.  相似文献   
357.
Using an on‐column local electrochemical microdetector operated in the amperometric mode, band elution profiles were recorded at different radial locations at the exit of a 10 mm id, 100 mm long silica‐based monolithic column. HETP plots were then acquired at each of these locations, and all these results were fitted to the Knox equation. This provided a spatial distribution of the values of the eddy diffusion (A), the molecular diffusion (B), and the resistance to the kinetics of mass transfer (C) terms. Results obtained indicate that the wall region yields higher A values and smaller C values than the central core region. Significant radial fluctuations of these contributions to band broadening occur throughout the exit column cross‐section. This phenomenon is due to the structural radial heterogeneity of the column.  相似文献   
358.
The treatment of a suspension of graphite oxide (GO) with sodium azide leads to a material that, after reduction, features amino groups at the top and bottom of the sheets. These groups react through microcontact printing with an isothiocyanate monolayer on a silicon oxide substrate to form covalent bonds that strongly attach to the particles on the surface. With ultrasonication it is possible to obtain exfoliation of the sheets that are not covalently bound to the surface leaving single‐layer platelets attached to the substrate. The azido derivative can be also used to functionalize the graphene oxide with long alkylic chains through a click chemistry approach. This functionalization results in the exfoliation of this material in dimethylformamide. The novel materials were fully characterized by different techniques including IR spectroscopy, thermogravimetric analysis (TGA), scanning and transmission electron microscopy (SEM and TEM), X‐Ray photoelectron spectroscopy (XPS), and solid state NMR spectroscopy. The material with amino groups, after the reduction step, is conductive with a resistivity only approximately seven times larger than that of unprocessed graphite. This implies that after reduction of the GO, the conjugated sp2 network is largely restored. We consider this to be an important step towards a chemical approach for forming conducting large‐area platelet films of single‐layer graphene.  相似文献   
359.
Journal of Thermal Analysis and Calorimetry - Conventional surfactants such as CTAB (cetrimonium bromide), SDS (sodium dodecyl sulphate), SDBS (sodium dodecyl sulphonate) are combined with...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号