全文获取类型
收费全文 | 1882篇 |
免费 | 43篇 |
国内免费 | 9篇 |
专业分类
化学 | 1190篇 |
晶体学 | 54篇 |
力学 | 37篇 |
数学 | 300篇 |
物理学 | 353篇 |
出版年
2023年 | 16篇 |
2022年 | 20篇 |
2021年 | 22篇 |
2020年 | 39篇 |
2019年 | 31篇 |
2018年 | 15篇 |
2016年 | 45篇 |
2015年 | 42篇 |
2014年 | 32篇 |
2013年 | 92篇 |
2012年 | 67篇 |
2011年 | 106篇 |
2010年 | 38篇 |
2009年 | 45篇 |
2008年 | 73篇 |
2007年 | 73篇 |
2006年 | 92篇 |
2005年 | 78篇 |
2004年 | 85篇 |
2003年 | 52篇 |
2002年 | 59篇 |
2001年 | 20篇 |
2000年 | 25篇 |
1999年 | 18篇 |
1998年 | 15篇 |
1997年 | 21篇 |
1996年 | 14篇 |
1994年 | 24篇 |
1993年 | 22篇 |
1992年 | 15篇 |
1991年 | 20篇 |
1989年 | 23篇 |
1988年 | 18篇 |
1987年 | 26篇 |
1986年 | 19篇 |
1985年 | 32篇 |
1984年 | 30篇 |
1983年 | 24篇 |
1982年 | 27篇 |
1981年 | 37篇 |
1980年 | 20篇 |
1979年 | 20篇 |
1978年 | 25篇 |
1977年 | 26篇 |
1976年 | 22篇 |
1975年 | 34篇 |
1974年 | 26篇 |
1973年 | 27篇 |
1972年 | 15篇 |
1967年 | 17篇 |
排序方式: 共有1934条查询结果,搜索用时 15 毫秒
51.
Kwati Leonard Junichi Kurawaki Katumitu Hayakawa Myint Thein Tun Yoshihumi Kusumoto 《Colloid and polymer science》2009,287(7):773-778
Laser irradiation of copper(II) tetrasulfonated phthalocyanine (CuTsPc) microcrystals in poor organic solvents such as methanol, 2-methyl-2-propanol, ethanol, tetrahydrofuran, and acetone has produced CuTsPc nanoparticles with 15–112 nm in diameter. Field emission scanning electron microscopy (FESEM) images have shown the formation of CuTsPc nanoparticles in poor organic solvents used in this work. The mean diameters of CuTsPc nanoparticles obtained from transmission electron microscopy (TEM) images in methanol, 2-methyl-2-propanol, ethanol, tetrahydrofuran, and acetone were determined to be 26, 36, 35, 86, and 78 nm, respectively. A correlation between the size of CuTsPc nanoparticles and a solvent polarity could be found in this work. 相似文献
52.
David J. Chesney Dennis E. Tallman Allen A. Peckrul Leonard W. Cook James R. Fleeker 《Analytica chimica acta》1987
For the determination of 2,4-dichlorophenol (DCP) residues in plant tissues, the use of high-performance liquid chromatography with amperometric detection decreases the quantitation limits by a factor of five compared to those obtained with gas chromatography with Hall conductivity detection. It also avoids the clean-up and derivatization procedures required for electron-capture detection. After extraction of DCP from plant tissue by steam distillation and collection in toluene, an alumina clean-up column is used to remove electroactive interferences from the samples. The DCP is then extracted into aqueous alkaline solution, neutralized, and diluted with acetonitrile to ca. 50% (v/v). An alternative clean-up made use of an in-line, pre-column electrochemical procedure, in which case the alumina column was not used. The components were separated with a reverse-phase column and detected with a polychlorotrifluoroethylene/graphite composite electrode at an applied potential of +1.0 V vs. Ag/AgCl. The quantitation limit for DCP in the plant tissues was 100 pg per injection (0.05 mg Kg?1). 相似文献
53.
Modifications were made on commercial SPME fiber assembly and SPME–LC interface to improve the applicability of SPME for LC. Polyacrylonitrile (PAN)/C18 bonded fuse silica was used as the fiber coating for LC applications because the fiber coating was not swollen in common LC solvents at room temperature. The inner tubing of SPME fiber assembly was replaced with a 457 μm outside diameter (o.d.) solid nitinol rod. And the coated fiber (o.d. 290 μm) was installed onto the nitinol rod. The inner diameter (i.d.) of the through hole of the ferrule in the SPME–LC interface was enlarged to 508 μm to accommodate the nitinol rod. The much larger inner rod protected the fiber coating from being stripped when the fiber was withdrawn from the SPME–LC interface. The system was evaluated in term of pressure test, desorption optimization, peak shape, carryovers, linear range, precision, and limit of detection (LOD) with polycyclic aromatic hydrocarbons (PAHs) as the test analytes. The results demonstrated that the improved system was robust and reliable. It overcame the drawbacks, such as leak of solvents and damage of fiber coatings, associated with current SPME fibers and SPME–LC interface. Another sealing mechanism was proposed by sealing the nitinol rod with a specially designed poly(ether ether ketone) (PEEK) fitting. The device was fabricated and tested for manual use. 相似文献
54.
Leonard Stoica Tautgirdas Ruzgas Lo Gorton 《Bioelectrochemistry (Amsterdam, Netherlands)》2009,76(1-2):42
The reaction mechanism of cellobiose dehydrogenase (CDH) from Phanerochaete chrysosporium, adsorbed on graphite electrodes, was investigated by following its catalytic reaction with cellobiose registered in both direct and mediated electron transfer modes between the enzyme and the electrode. A wall-jet flow through amperometric cell housing the CDH-modified graphite electrode was connected to a single line flow injection system. In the present study, it is proven that cellobiose, at concentrations higher than 200 μM, competes for the reduced state of the FAD cofactor and it slows down the transfer of electrons to any 2e−/H+ acceptors or further to the heme cofactor, via the internal electron transfer pathway. Based on and proven by electrochemical results, a kinetic model of substrate inhibition is proposed and supported by the agreement between simulation of plots and experimental data. The implications of this kinetic model, called pseudo-ping-pong mechanism, on the possible functions CDH are also discussed. The enzyme exhibits catalytic activity also for lactose, but in contrast to cellobiose, this sugar does not inhibit the enzyme. This suggests that even if some other substrates are coincidentally oxidized by CDH, however, they do not trigger all the possible natural functions of the enzyme. In this respect, cellobiose is regarded as the natural substrate of CDH. 相似文献
55.
Anca Peter Leonard Mihaly-Cozmuta Anca Mihaly-Cozmuta Camelia Nicula Agnieszka Jastrzębska Patrycja Kurtycz Andrzej Olszyna 《Chemical Papers》2015,69(6):839-855
Two types of graphene oxide-TiO2 composites were prepared: one by including graphene oxide flakes in the TiO2 sol, followed by thermal treatment (GI composite) at 300°C, and the second by including graphene oxide flakes in the calcined (at 500°C) TiO2 xerogel (GII composite). The composites were characterized by SEM, TEM-EDS, TEM-SADP, STEM-HAADF, HRTEM coupled with FT, XRD, and XPS. Photocatalysis results were fitted to different kinetic models (pseudo-first and pseudo-second kinetics, intraparticle Weber-Morris diffusion, film diffusion, and external mass transfer). The results showed that by introducing graphene oxide flakes in the TiO2 sol, followed by thermal treatment at 300°C (GI composite), an efficient graphene oxide-TiO2 catalyst with high specific surface area, heterogeneity, and many graphitized areas can be obtained. Complete crystallization of the composite is not the key issue for the best photoactivity achievement. The rate limiting step in the photocatalytic process is the photooxidation of SA molecules on the TiO2 surface. 相似文献
56.
Okamura WH Zhu GD Hill DK Thomas RJ Ringe K Borchardt DB Norman AW Mueller LJ 《The Journal of organic chemistry》2002,67(5):1637-1650
Isotope-labeled drug molecules may be useful for probing by NMR spectroscopy the conformation of ligand associated with biological hosts such as membranes and proteins. Triple-labeled [7,9,19-(13)C(3)]-vitamin D(3) (56), its 25-hydroxylated and 1 alpha,25-dihydroxylated metabolites (58 and 68, respectively), and other labeled materials have been synthesized via coupling of [9-(13)C]-Grundmann's ketone 39 or its protected 25-hydroxy derivative 43 with labeled A ring enyne fragments 25 or 26. The labeled CD-ring fragment 39 was prepared by a sequence involving Grignard addition of [(13)C]-methylmagnesium iodide to Grundmann's enone 28, oxidative cleavage, functional group modifications leading to seco-iodide 38, and finally a kinetic enolate S(N)2 cycloalkylation. The C-7,19 double labeling of the A-ring enyne was achieved by the Corey-Fuchs/Wittig processes on keto aldehyde 11. By employing these labeled fragments in the Wilson-Mazur route, the C-7,9,19 triple-(13)C-labeled metabolites 56, 58, and 68 as well as other (13)C-labeled metabolites have been prepared. In an initial NMR investigation of one of the labeled metabolites prepared in this study, namely [7,9,19-(13)C(3)]-25-hydroxyvitamin D(3) (58), the three (13)C-labeled carbons of the otherwise water insoluble steroid could be clearly detected by (13)C NMR analysis at 0.1 mM in a mixture of CD(3)OD/D(2)O (60/40) or in aqueous dimethylcyclodextrin solution and at 2 mM in 20 mM sodium dodecyl sulfate (SDS) aqueous micellar solution. In the SDS micellar solution, a double half-filter NOESY experiment revealed that the distance between the H(19Z) and H(7) protons is significantly shorter than that of the corresponding distance calculated from the solid state (X-ray) structure of the free ligand. The NMR data in micelles reveals that 58 exists essentially completely in the alpha-conformer with the 3 beta-hydroxyl equatorially oriented, just as in the solid state. The shortened distance (H(19Z))-H(7)) in micellar solutions as compared to that in the solid state is most easily rationalized on the basis that the 5(10)-torsion angle in 58 is decreased in micellar solutions as compared to that in the solid state. 相似文献
57.
The structure of an unusual covalent adduct formed by thiol-activated neocarzinostatin chromophore (NCS-chrom) and a RNA-DNA hybrid having an overhang of four unpaired residues at the 3'-end of the RNA strand has been elucidated by MS and NMR spectroscopic analyses. Unlike previously characterized adducts formed by NCS-chrom on the sugar residue of the DNA target, this adduct has been found to be on one of the uracil bases in the RNA overhang. Covalent linkage is between C-6 of the post-activated NCS-chrom and C-5 of the uracil. A novel mechanism involving adduction of the NCS-chrom C-6 radical, generated by 2-mercaptoethanol activation, to C-5 of the uracil at the U9 position of the RNA 11-mer, oxidation by dioxygen, reduction by the thiol, and subsequent dehydration is proposed for adduct formation. 相似文献
58.
Dajana Vuckovic Inés de Lannoy Brad Gien Yingbo Yang Florin Marcel Musteata Robert Shirey Leonard Sidisky Janusz Pawliszyn 《Journal of chromatography. A》2011,1218(21):3367-3375
The use of solid-phase microextraction (SPME) for in vivo sampling of drugs and metabolites in the bloodstream of freely moving animals eliminates the need for blood withdrawal in order to generate pharmacokinetics (PK) profiles in support of pharmaceutical drug discovery studies. In this study, SPME was applied for in vivo sampling in mice for the first time and enables the use of a single animal to construct the entire PK profile. In vivo SPME sampling procedure used commercial prototype single-use in vivo SPME probes with a biocompatible extractive coating and a polyurethane sampling interface designed to facilitate repeated sampling from the same animal. Pre-equilibrium in vivo SPME sampling, kinetic on-fibre standardization calibration and liquid chromatography–tandem mass spectrometry analysis (LC–MS/MS) were used to determine unbound and total circulating concentrations of carbamazepine (CBZ) and its active metabolite carbamazepine-10,11-epoxide (CBZEP) in mice (n = 7) after 2 mg/kg intravenous dosing. The method was linear in the range of 1–2000 ng/mL CBZ in whole blood with acceptable accuracy (93–97%) and precision (<17% RSD). The single dose PK results obtained using in vivo SPME sampling compare well to results obtained by serial automated blood sampling as well as by the more conventional method of terminal blood collection from multiple animals/time point. In vivo SPME offers the advantages of serial and repeated sampling from the same animal, speed, improved sample clean-up, decreased animal use and the ability to obtain both free and total drug concentrations from the same experiment. 相似文献
59.
B. P. Leonard 《Accreditation and quality assurance》2016,21(3):231-236
The base quantity ‘amount of substance’ is poorly understood and the name and symbol usually avoided. This is because of its formal interpretation as the number of entities multiplied by the reciprocal of the mysterious Avogadro constant, N A. If X signifies the kind of entities involved, the number of entities in a sample, N(X), is easily comprehended, and if m av(X) is the sample-average entity mass, the total mass, m(X) = N(X)m av(X)—an aggregate of N(X) average entity masses—is also conceptually straightforward. However, the corresponding amount of substance, n(X) = N(X)(1/N A)—an aggregate of N(X) ‘reciprocal Avogadro constants’—is incomprehensible unless some physical meaning can be attached to 1/N A. By contrast, the base unit, mole, is thought of by chemists as an aggregate of a particular number of entities: mol = \( {\mathcal N}_{\rm{Avo}} \) ent, where \( {\mathcal N}_{\rm{Avo}} \) is the Avogadro number (equal to g/Da) and ent represents one entity. It makes sense, therefore, to interpret amount of substance as an aggregate of a general number of entities: n(X) = N(X) ent—an easily grasped concept. A ‘reciprocal Avogadro constant’ is thus seen to actually be exactly one entity. One mole then corresponds to setting N(X) = \( {\mathcal N}_{\rm{Avo}} \), for which the total mass is the relative entity mass in grams—conforming to the original mole concept. 相似文献
60.
Kätlin Kaare Ivar Kruusenberg Maido Merisalu Leonard Matisen Väino Sammelselg Kaido Tammeveski 《Journal of Solid State Electrochemistry》2016,20(4):921-929
Manganese phthalocyanine (MnPc) and copper phthalocyanine (CuPc)-modified electrodes were prepared using multi-walled carbon nanotubes (MWCNTs) as a support material. The catalyst materials were heat treated at four different temperatures to investigate the effect of pyrolysis on the oxygen reduction reaction (ORR) activity of these electrocatalysts. The MWCNT to metal phthalocyanine ratio was varied. Scanning electron microscopy (SEM) was employed to visualise the surface morphology of the electrodes and the x-ray photoelectron spectroscopic (XPS) study was carried out to analyse the surface composition of the most active catalyst materials. The ORR was studied in 0.1 M KOH solution employing the rotating disk electrode (RDE) method. Glassy carbon (GC) electrodes were modified with carbon nanotube-supported metal phthalocyanine catalysts using Tokuyama AS-4 ionomer. The RDE results revealed that the highest electrocatalytic activity for ORR was achieved upon heat treatment at 800 °C. CuPc-derived catalyst demonstrated lower catalytic activity as compared to the MnPc-derived counterpart, which is in good agreement with previous literature, whereas the activity of MnPc-based catalyst was higher than that reported earlier. 相似文献