首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2464篇
  免费   80篇
  国内免费   1篇
化学   1468篇
晶体学   27篇
力学   40篇
数学   362篇
物理学   648篇
  2023年   9篇
  2022年   60篇
  2021年   72篇
  2020年   28篇
  2019年   47篇
  2018年   69篇
  2017年   50篇
  2016年   150篇
  2015年   92篇
  2014年   108篇
  2013年   249篇
  2012年   112篇
  2011年   138篇
  2010年   100篇
  2009年   99篇
  2008年   119篇
  2007年   85篇
  2006年   87篇
  2005年   65篇
  2004年   71篇
  2003年   63篇
  2002年   41篇
  2001年   42篇
  2000年   31篇
  1999年   27篇
  1998年   24篇
  1997年   28篇
  1996年   22篇
  1995年   26篇
  1994年   14篇
  1993年   14篇
  1992年   15篇
  1991年   21篇
  1990年   21篇
  1989年   20篇
  1988年   13篇
  1987年   26篇
  1986年   17篇
  1985年   23篇
  1984年   36篇
  1983年   13篇
  1982年   21篇
  1981年   20篇
  1980年   25篇
  1979年   18篇
  1978年   14篇
  1977年   16篇
  1975年   14篇
  1974年   9篇
  1973年   9篇
排序方式: 共有2545条查询结果,搜索用时 15 毫秒
981.
Andrzej Wawrzynek  Jerzy Pilśniak 《PAMM》2008,8(1):10351-10352
This work was intended as an attempt to assess the degradation of compressed concrete sample with regard to heterogeneity. The aim of this paper is to estimate of microdamages in heterogeneous materials as such as concrete. (© 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   
982.
B. Kościelska  A. Winiarski 《Journal of Non》2008,354(35-39):4349-4353
Sol–gel derived xNb2O5–(100 ? x)SiO2 films (where x = 100, 80, 60, 50, 40, 20, 0 mol%) were nitrided at various temperatures (800 °C, 900 °C, 1000 °C, 1100 °C and 1200 °C). The structural transformations occurring in the films as a result of ammonolysis were studied using X-ray diffraction (XRD), atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS). The XRD results have shown that the temperatures below 1100 °C were too low to obtain a pure NbN phase in the samples. The AFM observations indicate that the formation of the NbN phase and the size of NbN grains are related to the silica content in the layer. NbN grains become more regular and larger as the niobium content increases. The maximum grain size of about 100 nm was observed for x = 100. Preparation of the Nb2O5–SiO2 sol–gel derived layers and the subsequent nitridation is a promising method of inducing crystalline NbN in amorphous matrices. It follows from the XPS results that a small amount of Nb2O5 remains in the films after nitridation at 1200 °C and that nitrogen reacted not only with Nb2O5 but also with SiO2.  相似文献   
983.
We demonstrate that a Peierls dimerization can occur in ferromagnetic spin chains activated by thermal fluctuations. The dimer order parameter and entanglement measures are studied as functions of the modulation of the magnetic exchange interaction and temperature, using a spin-wave theory and the density-matrix renormalization group. We discuss the case where a periodic modulation is caused by spin-phonon coupling and the case where electronic states effectively induce such a modulation. The importance of the latter for a number of transition metal oxides is highlighted.  相似文献   
984.
The microstructure and magnetic properties, i.e. the initial magnetic susceptibility, its disaccommodation, core losses and approach to ferromagnetic saturation of the bulk amorphous and partially crystallized Fe61Co10Zr2.5Hf2.5Nb2W2B20 alloy are studied. From X-ray, Mössbauer spectroscopy and electron microscopy studies we have stated that all samples in the as-quenched state are fully amorphous. However, after annealing the samples at 850 K for 30 min the crystalline α-FeCo grains embedded in the amorphous matrix are found. Moreover, from Mössbauer spectra analysis we have stated that the crystalline phase in those samples exhibits the long-range order. The alloy in the as-quenched state shows good thermal stability of the initial magnetic susceptibility. Furthermore, the intensity of the magnetic susceptibility disaccommodation in the rod is lower than in the ribbon. It is due to low quenching rate during the rod preparation which involves the reduction of free volumes. From the analysis of the isochronal disaccommodation curves, assuming the Gaussian distribution of relaxation times, we have found that activation energies of the elementary processes responsible for this phenomenon range from 1.2 to 1.4 eV. After the annealing of the samples the initial susceptibility slightly enhances and disaccommodation drastically decreases. From high-field magnetization studies we have learned that the size of structural defects depends on the quenching rate (the shape of the samples) and changes after annealing.  相似文献   
985.
We introduce a microscopic model which unravels the physical mechanisms responsible for the observed phase diagram of the RVO3 perovskites. It reveals a nontrivial interplay between superexchange, the orbital-lattice coupling due to the GdFeO3-like rotations of the VO6 octahedra, and orthorhombic lattice distortions. We find that the lattice strain affects the onset of the magnetic and orbital order by partial suppression of orbital fluctuations. The present approach also provides a natural explanation of the observed reduction of magnon energies from LaVO3 to YVO3.  相似文献   
986.
The use of natural surfactants including plant extracts, plant hydrocolloids and proteins in nanoemulsion systems has received commercial interest due to demonstrated safety of use and potential health benefits of plant products. In this study, a whey protein isolate (WPI) from a byproduct of cheese production was used to stabilize a nanoemulsion formulation that contained hempseed oil and the Aesculus hippocastanum L. extract (AHE). A Box–Behnken experimental design was used to set the formulation criteria and the optimal nanoemulsion conditions, used subsequently in follow-up experiments that measured specifically emulsion droplet size distribution, stability tests and visual quality. Regression analysis showed that the concentration of HSO and the interaction between HSO and the WPI were the most significant factors affecting the emulsion polydispersity index and droplet size (nm) (p < 0.05). Rheological tests, Fourier transform infrared spectroscopy (FTIR) analysis and L*a*b* color parameters were also taken to characterize the physicochemical properties of the emulsions. Emulsion systems with a higher concentration of the AHE had a potential metabolic activity up to 84% in a microbiological assay. It can be concluded from our results that the nanoemulsion system described herein is a safe and stable formulation with potential biological activity and health benefits that complement its use in the food industry.  相似文献   
987.
The non commuting matrix elements of matrices from quantum groupGL q (2;C) withq≡ω being then-th root of unity are given a representation as operators in Hilbert space with help ofC 4 (n) generalized Clifford algebra generators appropriately tensored with unit 2×2 matrix infinitely many times. Specific properties of such a representation are presented. Relevance of generalized Pauli algebra to azimuthal quantization of angular momentum alà Lévy-Leblond [10] and to polar decomposition ofSU q (2;C) quantum algebra alà Chaichian and Ellinas [6] is also commented. The case ofqC, |q|=1 may be treated parallely.  相似文献   
988.
One of the methods of IR studies of the heterogeneity of Si–OH–Al groups in zeolites is the investigation of the frequency shift of the band of free OH bands restored upon the adsorption of ammonia and subsequent desorption at increasing temperatures. We extended this method by following the shift of the band of the OH group interacting by hydrogen bonding with nitrogen. The advantage of nitrogen, compared with CO, which has been commonly used as a probe molecule in studies on hydrogen bonding, is that for nitrogen the frequency shift is smaller than for CO and therefore there is no overlapping of shifted OH band with the bands of ammonium ions. For zeolites NaHY, HMFI, and HBEA, the frequency shift of IR bands of both free and hydrogen-bonded Si–OH–Al with the increase of ammonia desorption temperature evidences the heterogeneity of these hydroxyls. On the other hand, in zeolite HFAU of Si/Al = 31, Si–OH–Al were found to be homogeneous. Heterogeneity of OH groups may be explained both by the presence of Si–OH–Al of various number of Al near the bridge and of Si–OH–Al of various geometry.  相似文献   
989.
It is not easy to find data in the scientific literature on the quantitative content of individual phytochemicals. It is possible to find groups of compounds and even individual compounds rather easily, but it is not known what their concentration is in cultivated or wild plants. Therefore, the subject of this study was to determine the content of individual compounds in the new Paulownia species, Oxytree, developed in a biotechnology laboratory in 2008 at La Mancha University in Spain. Six secondary metabolites were isolated, and their chemical structure was confirmed by spectral methods. An analytical method was developed, which was then used to determine the content of individual compounds in leaves, twigs, flowers and fruits of Paulownia Clon in Vitro 112®. No flavonoids were found in twigs and fruits of Oxytree, while the highest phenylethanoid glycosides were found in twigs. In this study, we also focused on biological properties (anticoagulant or procoagulant) of extract and four fractions (A–D) of different chemical composition from Paulownia Clon in Vitro 112 leaves using whole human blood. These properties were determined based on the thrombus-formation analysis system (T-TAS), which imitates in vivo conditions to assess whole blood thrombogenecity. We observed that three fractions (A, C and D) from leaves decrease AUC10 measured by T-TAS. In addition, fraction D rich in triterpenoids showed the strongest anticoagulant activity. However, in order to clarify the exact mechanism of action of the active substances present in this plant, studies closer to physiological conditions, i.e., in vivo studies, should be performed, which will also allow to determine the effects of their long-term effects.  相似文献   
990.
Chitosan, a natural biopolymer, is an ideal candidate to prepare biomaterials capable of preventing microbial infections due to its antibacterial properties. Electrospinning is a versatile method ideally suited to process biopolymers with minimal impact on their physicochemical properties. However, fabrication parameters and post-processing routine can affect biological activity and, therefore, must be well adjusted. In this study, nanofibrous membranes were prepared using trifluoroacetic acid and dichloromethane and evaluated for physiochemical and antimicrobial properties. The use of such biomaterials as potential antibacterial agents was extensively studied in vitro using Staphylococcus aureus and Escherichia coli as test organisms. The antibacterial assay showed inhibition of bacterial growth and eradication of the planktonic cells of both E. coli and S. aureus in the liquid medium for up to 6 hrs. The quantitative assay showed a significant reduction in bacteria cell viability by nanofibers depending on the method of fabrication. The antibacterial properties of these biomaterials can be attributed to the structural modifications provided by co-solvent formulation and application of post-treatment procedure. Consequently, the proposed antimicrobial surface modification method is a promising technique to prepare biomaterials designed to induce antimicrobial resistance via antiadhesive capability and the biocide-releasing mechanism.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号