首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   249篇
  免费   4篇
  国内免费   2篇
化学   168篇
晶体学   2篇
力学   8篇
数学   18篇
物理学   59篇
  2023年   2篇
  2022年   3篇
  2020年   3篇
  2019年   4篇
  2018年   3篇
  2017年   2篇
  2015年   3篇
  2014年   6篇
  2013年   14篇
  2012年   17篇
  2011年   14篇
  2010年   12篇
  2009年   5篇
  2008年   14篇
  2007年   17篇
  2006年   13篇
  2005年   7篇
  2004年   15篇
  2003年   5篇
  2002年   5篇
  2001年   7篇
  2000年   6篇
  1999年   3篇
  1998年   6篇
  1996年   3篇
  1995年   7篇
  1994年   2篇
  1993年   5篇
  1992年   4篇
  1990年   2篇
  1989年   3篇
  1986年   3篇
  1985年   2篇
  1983年   1篇
  1982年   3篇
  1981年   4篇
  1980年   1篇
  1979年   1篇
  1978年   2篇
  1977年   1篇
  1975年   2篇
  1974年   4篇
  1973年   4篇
  1972年   2篇
  1970年   1篇
  1969年   1篇
  1937年   2篇
  1931年   1篇
  1928年   2篇
  1903年   1篇
排序方式: 共有255条查询结果,搜索用时 0 毫秒
61.
62.
63.
The synthesis of thermo‐ and ionic‐responsive copolymers based on polyethylene glycol methyl ether methacrylate (OEGMA) and 2,2,2‐trifluoroethyl acrylate (TFEA) via reversible addition‐fragmentation chain transfer polymerization is described. Reactivity ratios for the copolymerization of OEGMA and TFEA are rOEGMA = 2.46 and rTFEA = 0.22, indicating that OEGMA is incorporated more rapidly than TFEA monomers. The copolymers are thermosensitive and exhibit volume phase transitions (lower critical solution behavior) at temperature, which depend on copolymer composition and the presence of added salts in the aqueous solutions. It was found that the copolymers exhibited LCST transitions at temperatures below 353 K only in salt solutions. 1H NMR measurements indicated that motion of the protons located in and near the hydrophobic main chain are more sensitive to temperature than protons in the hydrophilic OEGMA side chains. The hydrophilic side chains remain largely hydrated; however, the presence of two distinct conformations of the terminal groups of the side chains was confirmed. The influence of OEGMA side chain length, copolymer composition, and salt type on aggregation behavior and dynamics was examined in detail. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 2375–2385  相似文献   
64.
A new biodegradable, water‐soluble macromonomer based on the commercial hyperbranched polyester Boltorn®H20 has been synthesized through the use of click chemistry. The macromonomer was developed with the aim of being injected with a comacromonomer, poly(ethylene glycol) (PEG) diacrylate, for in situ copolymerization to form biodegradable polymer hydrogels. Copolymer hydrogels were prepared from the macromonomer and PEG diacrylate (FW 700) by free radical copolymerization. A degree of phase separation of the hydrogels was observed during polymerization and with increasing incorporation of the Boltorn macromonomer an increasing tendency for the formation of macropores was observed. The swelling ratios of the gels in water and phosphate buffered saline solution, PBS, all increase with increasing Boltorn macromonomer concentration, as did the penetrant diffusion coefficients and the degradation rate in PBS. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   
65.
Pyrolyses of these highly branched fluorocarbons over glass beads caused the preferential thermolyses of CC bonds where there is maximum carbon substitution. Fluorinations of perfluoro-3,4-dimethylhex-3-ene (tetramer) (I) and perfluoro-4-ethyl-3,4-dimethylhex- 2-ehe (pentamer) (II) over cobalt (III) fluoride at 230° and 145° respectively afforded the corresponding saturated fluorocarbons (III) and (IV), though II gave principally the saturated tetramer (III) at 250°. Pyrolysis of III alone at 500—520° gave perfluoro-2-methylbutane (V), whilst pyrolysis of III in the presence of bromine or toluene afforded 2-bromononafluorobutane (VI) and 2H-nonafluorobutane (VII) respectively. Pyrolysis of perfluoro-3-ethyl-3, 4-dimethylhexane (IV) alone gave a mixture of perfluoro-2-methylbutane (V), perfluoro-2-methylbut-1-ene (VIII), perfluoro-3-methylpentane (IX), perfluoro-3,3-dimethylpentane (X), and perfluoro-3,4- dimethylhexane (III). Pyrolysis of IV in the presence of bromine gave (VI) and 3-bromo-3-trifluoromethyl-decafluoropentane (XI): with toluene, pyrolysis gare VlI and 3H-3-trifluoromethyldecafluoropentane (XII). Pyrolysis of II at 500° over glass gave perfluoro-1,2,3-trimethylcyclobutene (XIII) and perfluoro-2,3-dimethylpenta-1,3(E)- and (Z)-diene (XIV) and (XV) respectively. The diene mixture (XIV and XV) was fluorinated with CoF3 to give perfluoro-2,3-dimethylpentane (XVI) and was cyclised thermally to give the cyclobutene (XIII). Pyrolysis of perfluoro-2- (1′-ethyl-1′-methylpropyl)-3-methylpent-1-ene (XVII) (TFE hexamer major isomer) at 500° gave perfluoro-1-methyl-2-(1′-methylpropyl)cyclobut-1-ene (XVIII) and perfluoro-2-methyl-2-(1′-methylpropyl)buta-1,3-diene (XIX). Fluorination of XVIII over CoF3 gave perfluoro-1-methyl-2- (1′-methylpropyl)cyclobutane (XX), which on co-pyrolysis with bromine gave VI. XIX on heating gave XVIII. Reaction of XVIII with ammonia in ether gave a mixture of E and Z 1′-trifluoromethyl-2-(1′-trifluoromethyl- pentafluoropropyliden-1′-yl)tetrafluorocyclobutylamine (XXI) which on diazotisation and hydrolysis afforded 2-(2′trifluoromethyl- tetrafluorocyclobut-1-en-1′-yl)-octafluorobutan-2-ol (XXII).  相似文献   
66.
A transmission infrared microreactor cell which holds a pressed disc in a controlled atmosphere and allows microwave and conventional heating up to 423 K is demonstrated using the oxidation of carbon monoxide over the standard catalyst EUROPT-1. Optical characteristics are determined by the choice of CaF2 as the window material, allowing transmission from 77,000-1000 cm(-1). An oscillating microwave power regime with a peak height of 200 W is used and time-resolved infrared spectra and mass spectrometry show oscillations in the reaction which correspond to the microwave heating.  相似文献   
67.
A massive redistribution of the polariton occupancy to two specific wave vectors, zero and approximately 3.9x10(4) cm(-1), is observed under conditions of continuous wave excitation of a semiconductor microcavity. The "condensation" of the polaritons to the two specific states arises from stimulated scattering at final state occupancies of order unity. The stimulation phenomena, arising due to the bosonic character of the polariton quasiparticles, occur for conditions of resonant excitation of the lower polariton branch. High energy nonresonant excitation, as in most previous work, instead leads to conventional lasing in the vertical cavity structure.  相似文献   
68.
The radiation degradation of a nanotube-polyimide nanocomposite was studied. Radiation chemistry was observed that was not present in the unmodified polymer or in the imbedded single-walled carbon nanotubes (SWNTs) themselves. The tensile properties were found to be improved by the addition of SWNTs in the unirradiated materials, and no deterioration in these properties with irradiation was observed. The SWNTs were found to have a detrimental effect on the optical properties however. The transparency of the composite was degraded significantly faster by electron-beam radiation than the neat polymer was. This may make the SWNT/polyimide composites unsuitable for some space applications. Electron Spin Resonance (ESR) measurements determined that the SWNTs interfere with the radical chemistry in the irradiated materials. This could be due to energy dissipation by the SWNT network, preventing the formation of radical species, or alternatively, preferential reaction or termination of radicals by the nanotubes. FT-Raman spectroscopy was found to be a very useful tool for examining SWNTs embedded at low concentrations. It revealed no signs of SWNT degradation up to 10 MGy.  相似文献   
69.
Wurtz-type radical coupling of a variety of allylic and benzylic bromides was observed on irradiation with dimanganese decacarbonyl in excellent yield (77-99%). Efficient cross-coupling of two different bromides was also readily achieved.  相似文献   
70.
Oxirans (1) and (2), derived respectively from the pentamer and hexamer oligomers of tetrafluoroethene, were pyrolysed over pyrex glass at 300–500° alone and in the presence of cyclohexene, bromine and toluene. Thus, oxiran (1), pyrolysed alone, afforded perfluoro-2-methylbut-1-ene (3), perfluoro-2,3-dimethylpent-2-ene (4) and (E) and (Z) perfluoro-2,3-hex-3-ene (TFE tetramer) (5a, 5b). Co-pyrolysis of (1) with bromine afforded (E) and (Z) 2-bromoperfluoro-3-methylpent-2-ene (6a, 6b), whilst with toluene, (E) and (Z) 2H-perfluoro-3-methylpent-2-ene (7a, 7b) were obtained: (1) with excess cyclohexene also gave (7a, 7b). The oxiran (2), on pyrolysis alone, gave only (3). In the presence of bromine, (2) gave an equimolar mixture of 1-bromoperfluoro-3-methylpentan-2-one (8) and 3-bromoperfluoro-3-methylpentane (9). Co-pyrolysis of (2) with toluene yielded (3) and 3H-perfluoro-3-methylpentane (10). Pyrolysis of (2) with cyclohexene at 175° gave perfluoro-3-methyl-2-(1-methylpropyl)pent-2-en-1-oylfluoride (11), pentafluoroethylcyclohexane (12) and perfluoro[(1-ethyl-1-methylpropyl) (1-methylpropyl)]ketne (13).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号