首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   47篇
  免费   0篇
化学   16篇
数学   2篇
物理学   29篇
  2013年   1篇
  2011年   2篇
  2009年   1篇
  2008年   1篇
  2007年   2篇
  2004年   1篇
  2003年   1篇
  1997年   2篇
  1996年   1篇
  1995年   1篇
  1943年   2篇
  1941年   1篇
  1937年   2篇
  1934年   2篇
  1933年   2篇
  1929年   1篇
  1927年   4篇
  1926年   5篇
  1925年   4篇
  1924年   3篇
  1923年   5篇
  1922年   1篇
  1921年   1篇
  1898年   1篇
排序方式: 共有47条查询结果,搜索用时 62 毫秒
21.
22.
23.
24.
25.
This article concerns the character of decrease of solutions of linear parabolic systems that are close to splitting ones for time tending to infinity.  相似文献   
26.
Normal alkanes display multiple ordered phases, including an orthorhombic crystal (X) and two partially ordered rotator phases (RI and RII). The rotator phase transitions X-RI and RI-RII are of interest because they are weakly first-order, and because experiments suggest that crystalline polyethylene may nucleate via a metastable rotator phase. We have performed heating and cooling scans of all-atom NσT (isothermal, isostress) simulations of a pure C(23) solid. We find a sequence of phases, transition temperatures, structural and thermodynamic properties, all reasonably consistent with experiment, except that a monoclinic crystal is more stable in our simulations than the experimental orthorhombic structure. We find that the RI phase is well described as an orthorhombic crystal disordered by random ±90° rotations of molecules about their stem axis, and the RII phase can be represented as a loose hexagonal packing of parallel chain stems, which tend to orient with the in-plane projection of C-C bonds pointing between neighbors. To measure local orthorhombic, RI, or RII order, we define Potts- and Ising-like order parameters, from which global order parameters and correlation functions can be computed. We observe modest pretransitional fluctuations of local RI order in the RII phase near T(RI-RII), characteristic of this weakly first-order transition.  相似文献   
27.
In efforts to produce polymeric materials with tailored physical properties, significant interest has grown around the ability to control the spatial organization of nanoparticles in polymer nanocomposites. One way to achieve controlled particle arrangement is by grafting the nanoparticle surface with polymers that are compatible with the matrix, thus manipulating the interfacial interactions between the nanoparticles and the polymer matrix. Previous work has shown that the molecular weight of the grafted polymer, both at high grafting density and low grafting density, plays a key role in dictating the effective inter-particle interactions in a polymer matrix. At high grafting density nanoparticles disperse (aggregate) if the graft molecular weight is higher (lower) than the matrix molecular weight. At low grafting density the longer grafts can better shield the nanoparticle surface from direct particle-particle contacts than the shorter grafts and lead to the dispersion of the grafted particles in the matrix. Despite the importance of graft molecular weight, and evidence of non-trivial effects of polydispersity of chains grafted on flat surfaces, most theoretical work on polymer grafted nanoparticles has only focused on monodisperse grafted chains. In this paper, we focus on how bidispersity in grafted chain lengths affects the grafted chain conformations and inter-particle interactions in an implicit solvent and in a dense homopolymer polymer matrix. We first present the effects of bidispersity on grafted chain conformations in a single polymer grafted particle using purely Monte Carlo (MC) simulations. This is followed by calculations of the potential of mean force (PMF) between two grafted particles in a polymer matrix using a self-consistent Polymer Reference Interaction Site Model theory-Monte Carlo simulation approach. Monte Carlo simulations of a single polymer grafted particle in an implicit solvent show that in the bidisperse polymer grafted particles with an equal number of short and long grafts at low to medium grafting density, the short grafts are in a more coiled up conformation (lower radius of gyration) than their monodisperse counterparts to provide a larger free volume to the longer grafts so they can gain conformational entropy. The longer grafts do not show much difference in conformation from their monodisperse counterparts at low grafting density, but at medium grafting density the longer grafts exhibit less stretched conformations (lower radius of gyration) as compared to their monodisperse counterparts. In the presence of an explicit homopolymer matrix, the longer grafts are more compressed by the matrix homopolymer chains than the short grafts. We observe that the potential of mean force between bidisperse grafted particles has features of the PMF of monodisperse grafted particles with short grafts and monodisperse grafted particles with long grafts. The value of the PMF at contact is governed by the short grafts and values at large inter-particle distances are governed by the longer grafts. Further comparison of the PMF for bidisperse and monodisperse polymer grafted particles in a homopolymer matrix at varying parameters shows that the effects of matrix chain length, matrix packing fraction, grafting density, and particle curvature on the PMF between bidisperse polymer grafted particles are similar to those seen between monodisperse polymer grafted particles.  相似文献   
28.
The liquid-liquid phase separation curves for lysozyme in a salt solution are known to depend on salt type and salt concentration. For the case of monovalent cations, the cloud point temperature typically increases with increasing salt concentration, for fixed lysozyme concentration. For the case of divalent cations, however, a maximum in the cloud point temperature is observed that has been interpreted as being due to ion binding to the protein surface and subsequent water structuring. In this paper, we use a simple square well model due to Grigsby et al. (Biophys. Chem. 2001, 91, 231-243), whose well depth depends on salt type and salt concentration, to determine the phase coexistence surfaces from experimental data. The surfaces are shown as a function of temperature, salt concentration, and protein concentration for two typical salts, NaCl and MgCl2. These surfaces are calculated using the results of a single standard Monte Carlo simulation and a simple scaling argument and are in reasonably good agreement with known experimental results.  相似文献   
29.
30.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号