首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   23105篇
  免费   3351篇
  国内免费   2469篇
化学   16243篇
晶体学   277篇
力学   1369篇
综合类   199篇
数学   2309篇
物理学   8528篇
  2024年   68篇
  2023年   431篇
  2022年   750篇
  2021年   846篇
  2020年   871篇
  2019年   837篇
  2018年   722篇
  2017年   744篇
  2016年   1031篇
  2015年   1055篇
  2014年   1187篇
  2013年   1623篇
  2012年   1885篇
  2011年   2004篇
  2010年   1305篇
  2009年   1273篇
  2008年   1468篇
  2007年   1352篇
  2006年   1223篇
  2005年   972篇
  2004年   784篇
  2003年   659篇
  2002年   637篇
  2001年   461篇
  2000年   454篇
  1999年   483篇
  1998年   427篇
  1997年   424篇
  1996年   466篇
  1995年   366篇
  1994年   382篇
  1993年   273篇
  1992年   255篇
  1991年   233篇
  1990年   166篇
  1989年   131篇
  1988年   117篇
  1987年   97篇
  1986年   95篇
  1985年   85篇
  1984年   59篇
  1983年   49篇
  1982年   38篇
  1981年   28篇
  1980年   31篇
  1979年   18篇
  1978年   10篇
  1977年   8篇
  1975年   7篇
  1973年   6篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
Bismuth oxybromide (BiOBr) nanosheets are exciting photocatalysts for microbial disinfection and organic dye degradation. However, it remains a great challenge to easily recycle these nanomaterials and improve their photocatalytic ability. Herein, we constructed a novel photocatalytic BiOBr@PAG gel containing BiOBr nanosheets and polyacrylamide gel (PAG), based on peroxydisulfate-induced polymerization reaction. The photocatalytic gel had equally distribution of BiOBr nanosheets on the surface, and could be easily recycled from water. More strikingly, the gel could also rapidly kill all tested pathogenic bacteria (i. e., Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus) under irradiation. Its disinfection activity is attributed to remarkable intracellular ROS production and oxidative cell damage. Furthermore, the gel had higher photocatalytic activity than BiOBr nanosheets alone during degradation of organic dyes. This study developed a novel strategy for preparation of easy-recycling and high-efficiency photocatalytic systems for practical application in environmental treatment and medicinal disinfection.  相似文献   
992.

Phosphoaluminate cement (PAC) clinker had good mechanical properties at early and long-term period. In comparison, the compressive strength of PAC clinker modified by BaO was more prominent. As primary mineral phase for PAC clinker, CA’s mineralogical structure and hydration characteristics were intimately related to the compressive strength of hardened cement paste. In this study, the effects of BaO content on the calcination, mineralogical structure and hydration characteristics of CA were investigated. Experimental results showed that the appropriate calcination temperature of CA was 1400 °C. No more than 11% (the substitution ratio of BaO for CaO) addition of BaO can promote the conversion of C12A7 to CA and increase the formation ratio of CA. Appropriate content of 7 mol% BaO could endow the hardened paste with excellent compressive strength. In CA mineral phase the high limit addition of BaO was 15 mol%. The addition of BaO decreased and even restrained the formation of C2AH8 and C3AH6 of CA hydration products and also improved the content of CAH10. The addition of BaO dramatically decreased the hydration velocity and cumulative heat of CA mineral.

  相似文献   
993.
Lu  Lu  Wang  Jun  Chen  Feng  Wei  Lin-Tao  Lin  Li-Min  Li  Bao-Hong  Singh  Amita  Kumar  Abhinav 《Transition Metal Chemistry》2019,44(2):107-114

The linker 1,4-bis(2-methyl-imidazole-yl)-butane (bib) was used to construct two coordination polymers, specifically [Cd(bib)(ipa)]n (1) and [Zn(bib)(tpa)]n (2), in the presence of isophthalic acid (H2ipa) and terephthalic acid (H2tpa), respectively, under solvothermal conditions. Topological analyses reveal that the crystal of complex 1 consists of a 3D threefold interpenetrating network with Schläfli symbol {65.8}, while complex 2 possesses a 2D wavelike layer structure with Schläfli symbol {66}. The photocatalytic properties of both complexes for the degradation of methyl violet have been explored, revealing that complex 2 is a better photocatalyst than 1. A mechanism for the photocatalytic properties of the complexes is proposed, based on the results of density of states (DOS) and partial DOS calculations.

  相似文献   
994.
Investigating the structures and properties of Au-Ge mixed clusters can give insight into the microscopic mechanisms in gold-catalyzed Ge films and can also provide valuable information for the production of germanium-based functional materials. In this work, size-selected anion photoelectron spectroscopy and theoretical calculations were used to explore the structural evolution and electronic properties of Au2Gen-/0 (n=1-8) clusters. It is found that the two Au atoms in Au2Gen-/0 (n=1-8) showed high coordination numbers and weak aurophilic interactions. The global minima of Au2Gen- anions and Au2Gen neutrals are in spin doublet and singlet states, respectively. Au2Gen- anions and Au2Gen neutrals showed similar structural features, except for Au2Ge4-/0 and Au2Ge5-/0. The C2v symmetric V-shaped structure is observed for Au2Ge1-/0, while Au2Ge2-/0 has a C2v symmetric dibridged structure. Au2Ge3-/0 can be viewed as the two Au atoms attached to different Ge-Ge bonds of Ge3 triangle. Au2Ge4- has two Au atoms edge-capping Ge4 tetrahedron, while Au2Ge4 neutral adopts a C2v symmetric double Au atoms face-capping Ge4 rhombus. Au2Ge5-8-/0 show triangular, tetragonal, and pentagonal prism-based geometries. Au2Ge6 adopts a C2v symmetric tetragonal prism structure and exhibits σ plus π double bonding characters.  相似文献   
995.

The adsorption characteristics of phosphorylated Aspergillus niger (AN-P) for uranium(VI) were studied in this work. The AN-P was successfully prepared by the reaction of Aspergillus niger with phosphorus pentoxide in ice-bath under the catalysis of methanesulphonic acid. AN-P was characterized by FT-IR and SEM–EDS. The effects of pH, contact time, initial U(VI) ions concentration, adsorbent dosage and temperature on the adsorption of U(VI) by AN-P were investigated. The isotherm and kinetic data were accurately described by the Langmuir and pseudo-second-order models, respectively. The calculated thermodynamic parameters indicated that the adsorption of U(VI) by AN-P was an spontaneous and endothermic process. This indicated that the AN-P composite is a promising adsorbent for efficient removal of U(VI) from radioactive wastewater.

  相似文献   
996.
采用沉淀法制备了ZrO2,CeO2和Ce0.7Zr0.3O2载体,并用浸渍法制备负载型Pt催化剂。考察了500和900℃焙烧催化剂的丙烷完全氧化性能和水汽对丙烷氧化反应的影响。对于500℃焙烧的催化剂,催化剂的丙烷氧化活性顺序为:Pt/ZrO2-500>Pt/CeO2-500>Pt/Ce0.7Zr0.3O2-500;而经900℃焙烧的催化剂活性顺序为:Pt/ZrO2-900>Pt/Ce0.7Zr0.3O2-900>Pt/CeO2-900。反应气氛中水汽的存在对两种Pt/ZrO2催化剂的活性均有抑制作用(T50温度均提高了10~15℃);而对于Pt/CeO2-500催化剂有抑制作用(T50温度提高10℃),但对Pt/CeO2-900催化剂活性有促进作用(T50温度下降25℃);对于两种Pt/Ce0.7Zr0.3O2催化剂活性具有促进作用(T50温度均下降5~25℃)。表征结果表明催化剂的活性与其表面Pt物种价态密切相关,催化剂表面上Pt0物种有利于活性的提高。Pt/Ce0.7Zr0.3O2-500催化剂中只含有氧化态Pt物种(Pt^2+),而Pt/Ce0.7Zr0.3O2-900催化剂中则含有部分金属态Pt物种,因此其活性高于Pt/Ce0.7Zr0.3O2-500催化剂。  相似文献   
997.
Hot carriers (HCs) and thermal effects, stemming from plasmon decays, are crucial for most plasmonic applications. However, quantifying these two effects remains extremely challenging due to the experimental difficulty in accurately measuring the temperature at reaction sites. Herein, we provide a novel strategy to disentangle HCs from photothermal effects based on the different traits of heat dissipation (long range) and HCs transport (short range), and quantitatively uncover the dominant and potential-dependent role of photothermal effect by investigating the rapid- and slow-response currents in plasmon-mediated electrochemistry at nanostructured Ag electrode. Furthermore, the plasmoelectric surface potential is found to contribute to the rapid-response currents, which is absent in the previous studies.  相似文献   
998.
Biological ion channels and ion pumps with sub-nanometer sizes modulate ion transport in response to external stimuli. Realizing such functions with sub-nanometer solid-state nanopores has been an important topic with wide practical applications. Herein, we demonstrate a biomimetic photoresponsive ion channel and photodriven ion pump using a porphyrin-based metal–organic framework membrane with pore sizes comparable to hydrated ions. We show that the molecular-size pores enable precise and robust optoelectronic ion transport modulation in a broad range of concentrations, unparalleled with conventional solid-state nanopores. Upon decoration with platinum nanoparticles to form a Schottky barrier photodiode, photovoltage across the membrane is generated with “uphill” ion transport from low concentration to high concentration. These results may spark applications in energy conversion, ion sieving, and artificial photosynthesis.  相似文献   
999.
Hierarchically porous metal–organic frameworks (HP-MOFs) are promising in various applications. Most reported HP-MOFs are prepared based on the generation of mesopores in microporous frameworks, and the formed mesopores are connected by microporous channels, limiting the accessibility of mesopores for bulky molecules. A hierarchical structure is formed by constructing microporous MOFs in uninterrupted mesoporous tunnels. Using the confined space in as-prepared mesoporous silica, highly dispersed metal precursors for MOFs are coated on the internal surface of mesoporous tunnels. Ligand vapor-induced crystallization is employed to enable quantitative formation of MOFs in situ, in which sublimated ligands diffuse into mesoporous tunnels and react with metal precursors. The obtained hierarchically porous composites exhibit record-high adsorption capacity for the bulky molecule trypsin. The thermal and storage stability of trypsin is improved upon immobilization on the composites.  相似文献   
1000.
Defect passivation is an important strategy to achieve perovskite solar cells(PVSCs) with enhanced power conversion efficiencies(PCEs) and improved stability because the trap states induced by defects in the interfaces and grain boundaries of perovskites are harmful to both large open circuit voltage and high photocurrent of devices. Here, zinc cations(Zn~(2+)) were used as a dopant to passivate defects of the CsPbI_2Br perovskite leading to Zn~(2+)-doped CsPbI_2Br film with fewer trap states, improved charge transportation, and enhanced light-harvesting ability. Thus, the best-performance PVSC based on CsPbI2 Br with the optimal Zn~(2+)doping shows a higher PCE of 12.16% with a larger open-circuit voltage(V_(OC)) of 1.236 V, an improved shortcircuit current(J_(SC)) of 15.61 mA cm~(-2) in comparison with the control device based on the pure CsPbI_2Br which exhibits a PCE of 10.21% with a V_(OC)of 1.123 V, a J_(SC)of 13.27 mA cm~(-2). Time-resolved photoluminescence results show that the Zn~(2+)doping leads to perovskite film with extended photoluminescence lifetime which means a longer diffusion length and subsequently enhanced photocurrent and open circuit voltage. This work provides a simple strategy to boost the performance of PVSCs through Zn~(2+)doping.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号