首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   77220篇
  免费   7385篇
  国内免费   6043篇
化学   48216篇
晶体学   729篇
力学   4895篇
综合类   519篇
数学   8637篇
物理学   27652篇
  2025年   58篇
  2024年   801篇
  2023年   1601篇
  2022年   2495篇
  2021年   2947篇
  2020年   3160篇
  2019年   2949篇
  2018年   2206篇
  2017年   1947篇
  2016年   3057篇
  2015年   3167篇
  2014年   3734篇
  2013年   4902篇
  2012年   5938篇
  2011年   6044篇
  2010年   4106篇
  2009年   4039篇
  2008年   4213篇
  2007年   3821篇
  2006年   3588篇
  2005年   3117篇
  2004年   2530篇
  2003年   1915篇
  2002年   1699篇
  2001年   1541篇
  2000年   1442篇
  1999年   1585篇
  1998年   1352篇
  1997年   1186篇
  1996年   1240篇
  1995年   1094篇
  1994年   1030篇
  1993年   885篇
  1992年   784篇
  1991年   678篇
  1990年   580篇
  1989年   512篇
  1988年   387篇
  1987年   364篇
  1986年   317篇
  1985年   314篇
  1984年   212篇
  1983年   190篇
  1982年   150篇
  1981年   123篇
  1980年   84篇
  1978年   62篇
  1977年   55篇
  1975年   58篇
  1973年   59篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
931.
Hydride abstraction from the heterocyclic carbene borane adducts (NHC)BH2C6F5 (NHC: IMes or IMe4) gave the B−H containing [(NHC)B(H)C6F5]+ borenium cations. They added carbon monoxide to give the respective [(NHC)B(H)(C6F5)CO]+ boron carbonyl cations. Carbon nucleophiles add to the boron carbonyl to give [B](H) acyls. Hydride reduced the [B]CO cation to hydroxymethylborane derivatives.  相似文献   
932.
Inspired by the metal–sulfur (M-S) linkages in the nitrogenase enzyme, here we show a surface modification strategy to modulate the electronic structure and improve the N2 availability on a catalytic surface, which suppresses the hydrogen evolution reaction (HER) and improves the rate of NH3 production. Ruthenium nanocrystals anchored on reduced graphene oxide (Ru/rGO) are modified with different aliphatic thiols to achieve M-S linkages. A high faradaic efficiency (11 %) with an improved NH3 yield (50 μg h−1 mg−1) is achieved at −0.1 V vs. RHE in acidic conditions by using dodecanethiol. DFT calculations reveal intermediate N2 adsorption and desorption of the product is achieved by electronic structure modification along with the suppression of the HER by surface modification. The modified catalyst shows excellent stability and recyclability for NH3 production, as confirmed by rigorous control experiments including 15N isotope labeling experiments.  相似文献   
933.
Spiro conjugation has been proposed to dictate the efficiency of charge transfer, which could directly affect the spin–orbit charge transfer intersystem crossing (SOCT-ISC) process. However, this process has yet to be exemplified. Herein, we prepared three spirobis[anthracene]diones, in which two benzophenone moieties are locked in close proximity and differentially functionalized to fine-tune the charge transfer state. Its feasibility for SOCT-ISC was theoretically predicted, then experimentally evaluated. Through fine-tuning the spiro conjugation coupling and varying the solvent dielectric constants, ISC rate constants were engineered to vary in a dynamic range of three orders of magnitude, from 7.8×108 s−1 to 1.0×1011 s−1, which is the highest ISC rate reported for SOCT-ISC system to our knowledge. Our findings substantiate the key factors for effective SOCT-ISC and offer a new avenue for the rational design of heavy atom free triplet sensitizers.  相似文献   
934.
    
Hydrogels enable a variety of applications due to their dynamic networks, structural flexibility, and tailorable functionality. However, their mechanical performances are limited, specifically in the context of cellular mechanobiology. It is also difficult to fabricate robust gel networks with a long-term durability. Thus, a new generation of soft materials showing outstanding mechanical behavior for mechanobiology applications is highly desirable. We combined synthetic biology and supramolecular assembly to prepare elastin-like protein (ELP) organogel fibers with extraordinary mechanical properties. The mechanical performance and stability of the assembled anisotropic proteins are superior to other organo-/hydrogel systems. Bone-derived mesenchymal cells were introduced into the organofiber system for stem-cell lineage differentiation. This approach demonstrates the feasibility of mechanically strong and anisotropic organonetworks for mechanobiology applications and holds great potential for tissue-regeneration translations.  相似文献   
935.
    
Graphitic carbon nitride quantum dots (g-CNQDs) are highly promising photoresponsive materials. However, synthesis of monodispersed g-CNQDs remains challenging. Here we report the dual function of MOF [Cu3BTC2] (HKUST-1) as a catalyst and template simultaneously to prepare g-CNQDs under mild conditions. Cyanamide (CA), a graphitic carbon nitride precursor, catalytically dimerized inside the larger MOF cavities at 90 °C and condensed into g-CNQDs at 120 °C in a controlled fashion. The HKUST-1 template was stable under the reaction conditions, leading to uniform g-CNQDs with a particle size of 2.22±0.68 nm. The as prepared g-CNQDs showed photoluminescence emission with a quantum yield of 3.1 %. This concept (MOF dual functionality) for catalyzing CA polycondensation (open metal sites (OMSs) effect) and controlling the produced particle size (pore-templating effect), together with the tunable MOF porosity, is expected to produce unique g-CNQDs with controllable size, morphology, and surface functionality.  相似文献   
936.
    
Temperature sensors play a significant role in biology, chemistry, and engineering, especially those that can work accurately in a noninvasive manner. We adopted a photoinduced post-synthetic copolymerization strategy to realize a membranous ratiometric luminescent thermometer based on the emissions of two lanthanide ions. This novel mixed-lanthanide polyMOF membrane exhibits not only the integrity and temperature sensing behaviour of the Ln-MOF powder but also excellent mechanical properties, such as flexibility, elasticity, and processability. Moreover, the polyMOF membrane shows remarkable stability under harsh conditions, including high humidity, strong acid and alkali (pH 0–14), which allowed the mapping of temperature distributions in extreme circumstances. This work highlights a simple strategy for polyMOF membrane formation and pushes forward the further practical application of Ln-MOF-based luminescent thermometers in various fields and conditions.  相似文献   
937.
    
Selective hydrogenation of C=O against the conjugated C=C in cinnamaldehyde (CAL) is indispensable to produce cinnamyl alcohol (COL). Nonetheless, it is challenged by the low selectivity and the need to use organic solvents. Herein, for the first time, we report the use of Fe-Co alloy nanoparticles (NPs) on N-doped carbon support as a selective hydrogenation catalyst to efficiently convert CAL to COL. The resultant catalyst with the optimized Fe/Co ratio of 0.5 can achieve an exceptional COL selectivity of 91.7 % at a CAL conversion of 95.1 % in pure water medium under mild reaction conditions, ranking it the best performed catalyst reported to date. The experimental results confirm that the COL selectivity and CAL conversion efficiency are, respectively promoted by the presence of Fe and Co, while the synergism of the alloyed Fe-Co is the key to concurrently achieve high COL selectivity and CAL conversion efficiency.  相似文献   
938.
It is still a great challenge to achieve high selectivity of CH4 in CO2 electroreduction reactions (CO2RR) because of the similar reduction potentials of possible products and the sluggish kinetics for CO2 activation. Stabilizing key reaction intermediates by single type of active sites supported on porous conductive material is crucial to achieve high selectivity for single product such as CH4. Here, Cu2O(111) quantum dots with an average size of 3.5 nm are in situ synthesized on a porous conductive copper-based metal–organic framework (CuHHTP), exhibiting high selectivity of 73 % towards CH4 with partial current density of 10.8 mA cm−2 at −1.4 V vs. RHE (reversible hydrogen electrode) in CO2RR. Operando infrared spectroscopy and DFT calculations reveal that the key intermediates (such as *CH2O and *OCH3) involved in the pathway of CH4 formation are stabilized by the single active Cu2O(111) and hydrogen bonding, thus generating CH4 instead of CO.  相似文献   
939.
    
Fused-ring electron acceptors have made significant progress in recent years, while the development of fully non-fused ring acceptors has been unsatisfactory. Here, two fully non-fused ring acceptors, o-4TBC-2F and m-4TBC-2F, were designed and synthesized. By regulating the location of the hexyloxy chains, o-4TBC-2F formed planar backbones, while m-4TBC-2F displayed a twisted backbone. Additionally, the o-4TBC-2F film showed a markedly red-shifted absorption after thermal annealing, which indicated the formation of J-aggregates. For fabrication of organic solar cells (OSCs), PBDB-T was used as a donor and blended with the two acceptors. The o-4TBC-2F-based blend films displayed higher charge mobilities, lower energy loss and a higher power conversion efficiency (PCE). The optimized devices based on o-4TBC-2F gave a PCE of 10.26 %, which was much higher than those based on m-4TBC-2F at 2.63 %, and it is one of the highest reported PCE values for fully non-fused ring electron acceptors.  相似文献   
940.
Metal halide perovskites have been widely applied in optoelectronic fields, but their poor stability hinders their actual applications. A perovskite–zeolite composite was synthesized via in situ growth in air from aluminophosphate AlPO-5 zeolite crystals and perovskite nanocrystals. The zeolite matrix provides quantum confinement for perovskite nanocrystals, achieving efficient green emission, and it passivates the defects of perovskite by H-bonding interaction, which leads to a longer lifetime compared to bulk perovskite film. Furthermore, the AlPO-5 zeolite also acts as a protection shield and enables ultrahigh stability of perovskite nanocrystals under 150 °C heat stress, under a 15-month long-term ambient exposure, and even in water for more than 2 weeks, respectively. The strategy of in situ passivation and encapsulation for the perovskite@AlPO-5 composite was amenable to a range of perovskites, from MA- to Cs-based perovskites. Benefiting from high stability and photoluminescence performance, the composite exhibits great potential to be virtually applied in light-emitting diodes (LEDs) and backlight displays.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号