首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   44743篇
  免费   9618篇
  国内免费   2785篇
化学   46481篇
晶体学   447篇
力学   1142篇
综合类   94篇
数学   3251篇
物理学   5731篇
  2024年   25篇
  2023年   177篇
  2022年   347篇
  2021年   505篇
  2020年   1514篇
  2019年   2861篇
  2018年   1314篇
  2017年   921篇
  2016年   3722篇
  2015年   3896篇
  2014年   3883篇
  2013年   4643篇
  2012年   3696篇
  2011年   2935篇
  2010年   3365篇
  2009年   3362篇
  2008年   2898篇
  2007年   2201篇
  2006年   1869篇
  2005年   1992篇
  2004年   1755篇
  2003年   1627篇
  2002年   2428篇
  2001年   1712篇
  2000年   1498篇
  1999年   565篇
  1998年   224篇
  1997年   170篇
  1996年   147篇
  1995年   124篇
  1994年   98篇
  1993年   90篇
  1992年   76篇
  1991年   82篇
  1990年   51篇
  1989年   41篇
  1988年   36篇
  1987年   24篇
  1986年   23篇
  1985年   29篇
  1984年   27篇
  1983年   22篇
  1982年   19篇
  1981年   22篇
  1980年   15篇
  1979年   12篇
  1978年   11篇
  1977年   25篇
  1976年   14篇
  1974年   12篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
951.
952.
Core–shell‐structured mesoporous silica spheres were prepared by using n‐octadecyltrimethoxysilane (C18TMS) as the surfactant. Hollow mesoporous carbon spheres with controllable diameters were fabricated from core–shell‐structured mesoporous silica sphere templates by chemical vapor deposition (CVD). By controlling the thickness of the silica shell, hollow carbon spheres (HCSs) with different diameters can be obtained. The use of ethylene as the carbon precursor in the CVD process produces the materials in a single step without the need to remove the surfactant. The mechanism of formation and the role played by the surfactant, C18TMS, are investigated. The materials have large potential in double‐layer supercapacitors, and their electrochemical properties were determined. HCSs with thicker mesoporous shells possess a larger surface area, which in turn increases their electrochemical capacitance. The samples prepared at a lower temperature also exhibit increased capacitance as a result of the Brunauer–Emmett–Teller (BET) area and larger pore size.  相似文献   
953.
A series of pyrenoimidazoles that contained various functional chromophores, such as anthracene, pyrene, triphenylamine, carbazole, and fluorene, were synthesized and characterized by optical, electrochemical, and theoretical studies. The absorption spectra of the dyes are dominated by electronic transitions that arise from the pyrenoimidazole core and the additional chromophore. All of the dyes exhibited blue‐light photoluminescence with moderate‐to‐high quantum efficiencies. They also displayed high thermal stability and their thermal‐decomposition temperatures fell within the range 462–512 °C; the highest decomposition temperature was recorded for a carbazole‐containing dye. The oxidation propensity of the dyes increased on the introduction of electron‐rich chromophores, such as triphenylamine or carbazole. The application of selected dyes that featured additional chromophores such as pyrene, carbazole, and triphenylamine as blue‐emissive dopants into multilayered organic light‐emitting diodes with a 4,4′‐bis(9H‐carbazol‐9‐yl)biphenyl (CBP) host was investigated. Devices that were based on triphenylamine‐ and carbazole‐containing dyes exhibited deep‐blue emission (CIE 0.157, 0.054 and 0.163, 0.041), whereas a device that was based on a pyrene‐containing dye showed a bright‐blue emission (CIE 0.156, 0.135).  相似文献   
954.
A new bridging ligand, 2,3‐di(2‐pyridyl)‐5‐phenylpyrazine (dpppzH), has been synthesized. This ligand was designed so that it could bind two metals through a NN‐CNN‐type coordination mode. The reaction of dpppzH with cis‐[(bpy)2RuCl2] (bpy=2,2′‐bipyridine) affords monoruthenium complex [(bpy)2Ru(dpppzH)]2+ ( 12+ ) in 64 % yield, in which dpppzH behaves as a NN bidentate ligand. The asymmetric biruthenium complex [(bpy)2Ru(dpppz)Ru(Mebip)]3+ ( 23+ ) was prepared from complex 12+ and [(Mebip)RuCl3] (Mebip=bis(N‐methylbenzimidazolyl)pyridine), in which one hydrogen atom on the phenyl ring of dpppzH is lost and the bridging ligand binds to the second ruthenium atom in a CNN tridentate fashion. In addition, the RuPt heterobimetallic complex [(bpy)2Ru(dpppz)Pt(C?CPh)]2+ ( 42+ ) has been prepared from complex 12+ , in which the bridging ligand binds to the platinum atom through a CNN binding mode. The electronic properties of these complexes have been probed by using electrochemical and spectroscopic techniques and studied by theoretical calculations. Complex 12+ is emissive at room temperature, with an emission λmax=695 nm. No emission was detected for complex 23+ at room temperature in MeCN, whereas complex 42+ displayed an emission at about 750 nm. The emission properties of these complexes are compared to those of previously reported Ru and RuPt bimetallic complexes with a related ligand, 2,3‐di(2‐pyridyl)‐5,6‐diphenylpyrazine.  相似文献   
955.
956.
In this study, surface‐functionalized, branched polyethylenimine (BPEI)‐modified YVO4:Bi3+,Eu3+ nanocrystals (NCs) were successfully synthesized by a simple, rapid, solvent‐free hydrothermal method. The BPEI‐coated YVO4:Bi3+,Eu3+ NCs with high crystallinity show broad‐band excitation in the λ=250 to 400 nm near‐ultraviolet (NUV) region and exhibit a sharp‐line emission band centered at λ=619 nm under excitation at λ=350 nm. The surface amino groups contributed by the capping agent, BPEI, not only improve the dispersibility and water/buffer stability of the BPEI‐coated YVO4:Bi3+,Eu3+ NCs, but also provide a capability for specifically targeted biomolecule conjugation. Folic acid (FA) and epidermal growth factor (EGF) were further attached to the BPEI‐coated YVO4:Bi3+,Eu3+ NCs and exhibited effective positioning of fluorescent NCs toward the targeted folate receptor overexpressed in HeLa cells or EGFR overexpressed in A431 cells with low cytotoxicity. These results demonstrate that the ligand‐functionalized, BPEI‐coated YVO4:Bi3+, Eu3+ NCs show great potential as a new‐generation biological luminescent bioprobe for bioimaging applications. Moreover, the unique luminescence properties of BPEI‐coated YVO4:Bi3+,Eu3+ NCs show potential to combine with a UVA photosensitizing drug to produce both detective and therapeutic effects for human skin cancer therapy.  相似文献   
957.
The lanthanum(III) complexes tris(3,5‐diphenylpyrazolato‐κ2N,N′)tris(tetrahydrofuran‐κO)lanthanum(III) tetrahydrofuran monosolvate, [La(C15H11N2)3(C4H8O)3]·C4H8O, (I), and tris(3,5‐diphenyl‐1,2,4‐triazolato‐κ2N1,N2)tris(tetrahydrofuran‐κO)lanthanum(III), [La(C14H10N3)3(C4H8O)3], (II), both contain LaIII atoms coordinated by three heterocyclic ligands and three tetrahydrofuran ligands, but their coordination geometries differ. Complex (I) has a mer‐distorted octahedral geometry, while complex (II) has a fac‐distorted configuration. The difference in the coordination geometries and the existence of asymmetric La—N bonding in the two complexes is associated with intramolecular C—H...N/O interactions between the ligands.  相似文献   
958.
In the title compound, C24H36N6O6·C2H6OS, the carbonyl groups are in an antiperiplanar conformation, with O=C—C=O torsion angles of 178.59 (15) and −172.08 (16)°. An intramolecular hydrogen‐bonding pattern is depicted by four N—H...O interactions, which form two adjacent S(5)S(5) motifs, and an N—H...N interaction, which forms an S(6) ring motif. Intermolecular N—H...O hydrogen bonding and C—H...O soft interactions allow the formation of a meso‐helix. The title compound is the first example of a helical 1,2‐phenylenedioxalamide. The oxalamide traps one molecule of dimethyl sulfoxide through N—H...O hydrogen bonding. C—H...O soft interactions give rise to the two‐dimensional structure.  相似文献   
959.
A new ternary dithulium hexacobalt icosastannide, Tm2.22Co6Sn20, and a new quaternary thulium dilithium hexacobalt icosastannide, TmLi2Co6Sn20, crystallize as disordered variants of the binary cubic Cr23C6 structure type (cF116). 48 Sn atoms occupy sites of m.m2 symmetry, 32 Sn atoms sites of .3m symmetry, 24 Co atoms sites of 4m.m symmetry, eight Li (or Tm in the case of the ternary phase) atoms sites of symmetry and four Tm atoms sites of symmetry. The environment of one Tm atom is an 18‐vertex polyhedron and that of the second Tm (or Li) atom is a 16‐vertex polyhedron. Tetragonal antiprismatic coordination is observed for the Co atoms. Two Sn atoms are enclosed in a heavily deformed bicapped hexagonal prism and a monocapped hexagonal prism, respectively, and the environment of the third Sn atom is a 12‐vertex polyhedron. The electronic structures of both title compounds were calculated using the tight‐binding linear muffin‐tin orbital method in the atomic spheres approximation (TB–LMTO–ASA). Metallic bonding is dominant in these compounds, but the presence of Sn—Sn covalent dumbbells is also observed.  相似文献   
960.
2,2′‐Anhydro‐1‐(3′,5′‐di‐O‐acetyl‐β‐D‐arabinofuranosyl)uracil, C13H14N2O7, was obtained by refluxing 2′,3′‐O‐(methoxymethylene)uridine in acetic anhydride. The structure exhibits a nearly perfect C4′‐endo (4E) conformation. The best four‐atom plane of the five‐membered furanose ring is O—C—C—C, involving the C atoms of the fused five‐membered oxazolidine ring, and the torsion angle is only −0.4 (2)°. The oxazolidine ring is essentially coplanar with the six‐membered uracil ring [r.m.s. deviation = 0.012 (5) Å and dihedral angle = −3.2 (3)°]. The conformation at the exocyclic C—C bond is gauche–trans which is stabilized by various C—H...π and C—O...π interactions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号