首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   725篇
  免费   7篇
  国内免费   1篇
化学   402篇
晶体学   1篇
力学   10篇
数学   59篇
物理学   261篇
  2020年   5篇
  2019年   5篇
  2017年   8篇
  2016年   7篇
  2014年   6篇
  2013年   17篇
  2012年   21篇
  2011年   25篇
  2010年   13篇
  2009年   6篇
  2008年   14篇
  2007年   17篇
  2006年   24篇
  2005年   18篇
  2004年   20篇
  2003年   12篇
  2002年   21篇
  2001年   23篇
  2000年   22篇
  1999年   21篇
  1998年   12篇
  1997年   8篇
  1996年   27篇
  1995年   13篇
  1994年   20篇
  1993年   21篇
  1992年   21篇
  1991年   12篇
  1990年   9篇
  1989年   6篇
  1988年   8篇
  1987年   9篇
  1986年   13篇
  1985年   16篇
  1984年   17篇
  1983年   8篇
  1982年   13篇
  1981年   14篇
  1980年   13篇
  1979年   15篇
  1978年   20篇
  1977年   19篇
  1976年   17篇
  1975年   9篇
  1974年   8篇
  1973年   15篇
  1972年   6篇
  1969年   6篇
  1968年   5篇
  1894年   5篇
排序方式: 共有733条查询结果,搜索用时 15 毫秒
61.
Crystalline multilayer systems with structure ABABA... offer the possibility of combining functional properties of two distinctly different materials, and of exploiting the interfaces to couple functionality of one component to the other. The multilayer environment permits the amplification of interface properties as would be important for device applications. The manipulation of ferroelectric, ferromagnetic, and/or ferroelastic properties in so-called ferroic materials through growth of thin films, multilayers, and graded composition structures has received considerable experimental and theoretical attention in recent years. We survey the current status of atomic-scale modeling of multilayer systems which could exhibit ferroic behavior; i.e., spontaneous order below a critical temperature and hysteresis in stimulus-response behavior. The roles of interfacial strain, chemical variability at the interface, and film thickness are explored, taking as a primary example the classic BaTiO3?∣∣Fe3O4 ferroelectric∣∣ferrimagnetic interactions. First principles band structure calculations are used to determine relaxed interface structures and residual stresses, as well as the underlying electronic distributions. Embedded cluster methods are then used to extract local chemical bonding characteristics and hyperfine properties.  相似文献   
62.
63.
64.
P N Wells  N de Jong  N Bom  J Somer 《Ultrasonics》1986,24(4):230-232
Transducer safety encompasses a wide spectrum of topics. It may range from mechanical construction reliability to biological effects created by ultrasound radiation. In this Paper the electrical and acoustical safety aspects are summarized and initial experience with sterilization of echocardiographic transducers for peroperative cardiac scanning is mentioned.  相似文献   
65.
66.
Among the myosin superfamily, myosin VI differs from all others by a reverse directionality and a particular motility. Little structural information is available for myosin VI. It is known that it binds one calmodulin (CaM) by means of a single "IQ motif" and that myosin VI contains a specific insert located at the junction between the motor domain (MD) and the lever arm, likely to play a critical role for the unusual motility previously observed. Electrospray ionization mass spectrometry (MS) was used to determine the CaM and Ca2+ stoichiometries in several myosin VI constructs. In particular, the experimental conditions required for the observation of multiprotein/Ca2+ noncovalent assemblies are detailed for two truncated MD constructs (less than 20 kDa) and for three full MD constructs (more than 90 KDa). The specificity of the detected stoichiometries is discussed for each construct and the resolving power of Time of Flight mass spectrometry is stressed, in particular for the detection of metal ions binding to high molecular weight complexes. MS reveals a new CaM binding site for myosin VI and highlights a different behavior for the five myosin VI constructs versus Ca2+ binding. In addition to these stoichiometry based experiments, gas-phase dissociation analyses on intact complexes are described. They reveal that Ca2+ transfer between protein partners occurs during the dissociation process for one construct with a full MD. Charge-transfer and dissociation behavior has allowed to draw structural assumptions for the interaction of the MD with the CaM N-terminal lobe.  相似文献   
67.
The adsorption of cadmium onto goethite in the presence of citric acid was measured as a function of pH and cadmium concentration at 25 degrees C. Potentiometric titrations were also performed on the system. Cadmium adsorption onto goethite was enhanced above pH 4 in the presence of 50 microM, 100 microM and 1 mM citric acid. While there was little difference between the enhancements caused by 50 and 100 microM citric acid below pH 6, above pH 6 further enhancement is seen in the presence of 100 microM citric acid. When 1 mM citric acid was present, the enhancement of cadmium adsorption was greater below pH 6, with increased Cd(II) adsorption down to pH 3.5. However, above pH 6, 1 mM of citric acid caused slightly less enhancement than the lower citric acid concentrations. ATR-FTIR spectra of soluble and adsorbed citrate-cadmium species were measured as a function of pH. At pH 4.6 there was very little difference between the ternary Cd(II)-citric acid-goethite spectrum and the binary citric acid-goethite spectrum. However, spectra of the ternary system at pH 7.0 and 8.7 indicated the presence of additional surface species. Further analysis of the spectra suggested that these were metal-ligand outer-sphere complexes. Data from the adsorption experiments and potentiometric titrations of the ternary Cd(II)-citric acid-goethite system were fitted by an extended constant-capacitance surface complexation model. The spectroscopic data were used to inform the choice of surface species. Three reactions in addition to those for the binary Cd(II)-goethite and citric acid-goethite systems were required to describe all of the data. They were [formula in text], [formula in text], and [formula in text]. Neither the spectroscopy nor the modeling suggested the formation of a ternary inner-sphere complex or a surface precipitate under the conditions used in this study.  相似文献   
68.
The identification and quantitation of the non-ecstasy amphetamine-type stimulants (ATSs) amphetamine and methamphetamine in lakes, rivers, wastewater treatment plant influents, effluents, and biosolids are reviewed. Neither monitoring nor reporting is required of these ATSs, which are considered emerging pollutants, but they have been identified in the environment. Amphetamine and methamphetamine enter our water supply by human excretion after legal or illegal consumption and via manufacturing in clandestine laboratories. Analytical methodology for sampling, sample preparation, separation, and detection of ATSs is discussed. Reported occurrences of ATSs in the environment and their use in municipal sewage epidemiology are noted. Future research needs that challenge applications of analytical techniques are discussed. The review focuses on research reported from 2004 to 2009.  相似文献   
69.
Titration microcalorimetry is used to study the influences of iodide, bromide, and chloride counterions on the aggregation of vesicle-forming 1-methyl-4-(2-pentylheptyl)pyridinium halide surfactants. Formation of vesicles by these surfactants was characterised using transmission electron microscopy. When the counterion is changed at 303 K through the series iodide, bromide, to chloride, the critical vesicular concentration (cvc) increases and the enthalpy of vesicle formation changes from exo- to endothermic. With increase in temperature to 333 K, vesicle formation becomes strongly exothermic. Increasing the temperature leads to a decrease in enthalpy and entropy of vesicle formation for all three surfactants. However the standard Gibbs energy for vesicle formation is, perhaps surprisingly, largely unaffected by an increase in temperature, as a consequence of a compensating change in both standard entropy and standard enthalpy of vesicle formation. Interestingly, standard isobaric heat capacities of vesicle formation are negative, large in magnitude but not strikingly dependent on the counterion. We conclude that the driving force for vesicle formation can be understood in terms of overlap of the thermally labile hydrophobic hydration shells of the alkyl chains. Copyright 2000 Academic Press.  相似文献   
70.
The reactions of the molecular transition metal iodates A[CrO(3)(IO(3))] (A = K, Rb, Cs) with UO(3) under mild hydrothermal conditions provide access to four new, one-dimensional, uranyl chromatoiodates, Rb[UO(2)(CrO(4))(IO(3))(H(2)O)] (1) and A(2)[UO(2)(CrO(4))(IO(3))(2)] (A = K (2), Rb (3), Cs (4)). Under basic conditions, MoO(3), UO(3), and KIO(4) can be reacted to form K(2)[UO(2)(MoO(4))(IO(3))(2)] (5), which is isostructural with 2 and 3. The structure of 1 consists of one-dimensional[UO(2)(CrO(4))(IO(3))(H(2)O)](-) ribbons that contain uranyl moieties bound by bridging chromate and iodate anions as well as a terminal water molecule to create [UO(7)] pentagonal bipyramidal environments around the U(VI) centers. These ribbons are separated from one another by Rb(+) cations. When the iodate content is increased in the hydrothermal reactions, the terminal water molecule is replaced by a monodentate iodate anion to yield 2-4. These ribbons can be further modified by replacing tetrahedral chromate anions with MoO(4)(2)(-) anions to yield isostructural, one-dimensional [UO(2)(MoO(4))(IO(3))(2)](2)(-) ribbons. Crystallographic data: 1, triclinic, space group P(-)1, a = 7.3133(5) A, b = 8.0561(6) A, c = 8.4870(6) A, alpha = 88.740(1) degrees, beta = 87.075(1) degrees, gamma = 71.672(1) degrees, Z = 2; 2, monoclinic, space group P2(1)/c, a = 11.1337(5) A, b = 7.2884(4) A, c = 15.5661(7) A, beta = 107.977(1) degrees, Z = 4; 3, monoclinic, space group P2(1)/c, a = 11.3463(6) A, b = 7.3263(4) A, c = 15.9332(8) A, beta = 108.173(1) degrees, Z = 4; 4, monoclinic, space group P2(1)/n, a = 7.3929(5) A, b = 8.1346(6) A, c = 22.126(2) A, beta = 90.647(1) degrees, Z = 4; 5, monoclinic, space group P2(1)/c, a = 11.3717(6) A, b = 7.2903(4) A, c = 15.7122(8) A, beta = 108.167(1) degrees, Z = 4.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号