首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   93篇
  免费   0篇
化学   54篇
数学   28篇
物理学   11篇
  2022年   2篇
  2020年   3篇
  2019年   1篇
  2018年   1篇
  2017年   2篇
  2015年   1篇
  2014年   1篇
  2013年   2篇
  2012年   5篇
  2011年   7篇
  2010年   2篇
  2009年   2篇
  2008年   5篇
  2007年   7篇
  2006年   9篇
  2005年   6篇
  2004年   6篇
  2003年   9篇
  2002年   6篇
  2001年   1篇
  1998年   2篇
  1997年   3篇
  1996年   1篇
  1995年   1篇
  1993年   1篇
  1991年   1篇
  1982年   2篇
  1981年   2篇
  1980年   1篇
  1903年   1篇
排序方式: 共有93条查询结果,搜索用时 31 毫秒
31.
32.
We present a rigorous analysis of unique, wide electrochemical window solutions for rechargeable magnesium batteries, based on aromatic ligands containing organometallic complexes. These solutions are comprised of the transmetalation reaction products of Ph(x)MgCl(2-x) and Ph(y)AlCl(3-y) in different proportions, in THF. In principle, these reactions involve the exchange of ligands between the magnesium and the aluminum based compounds, forming ionic species and neutral molecules, such as Mg(2)Cl(3)(+)·6THF, MgCl(2)·4THF, and Ph(y)AlCl(4-y)(-) (y = 0-4). The identification of the equilibrium species in the solutions is carried out by a combination of Raman spectroscopy, multinuclear NMR, and single-crystal XRD analyses. The association of the spectroscopic results with explicit identifiable species is supported by spectral analyses of specially synthesized reference compounds and DFT quantum-mechanical calculations. The correlation between the identified solution equilibrium species and the electrochemical anodic stability window is investigated. This study advances both development of new nonaqueous solution chemistry and possible development of high-energy density rechargeable Mg batteries.  相似文献   
33.
A model for synchronized parallel computation is described in which all p processors have access to a common memory. This model is used to solve the problems of finding the maximum, merging, and sorting by p processors. The main results are: 1. Finding the maximum of n elements (1 < pn) within a depth of O(np + log logp); (optimal for p ≤ nlog log n). 2. Merging two sorted lists of length m and n (mn) within a depth of O(np + log n) for pn (optimal for p ≤ nlog n), O(logmlogpn) for p ≥ n(= O(k) if p = m1kn, k > 1). 3. Sorting n elements within a depth of O(nplogn + lognlogp) for pn, (optimal for p ≤ nlog n). O(log2nlogpn) + logn) for p ≥ n (= O(k logn) if p = n1+1k, k > 1). The depth of O(klogn) for p = n1+1k processors was also achieved by Hirschberg (Comm. ACM21, No. 8 1978, 657–661) and Preparata IEEE Trans ComputersC-27 (July 1978), 669–673). Our algorithm is substantially simpler. All the elementary operations including allocation of processors to their jobs are taken into account in deriving the depth complexity and not only comparisons.  相似文献   
34.
A circular string A = (a1,…,an) is a string that has n equivalent linear representations Ai = ai,…,an,a1,…,ai?1 for i = 1,…,n. The ai's are assumed to be well ordered. We say that Ai < Aj if the word aiana1ai?1 precedes the word ajana1aj?1 in the lexicographic order, Ai ? Aj if either Ai < Aj or Ai = Aj. Ai0 is a minimal representation of A if Ai0 ? Ai for all 1 ≤ in. The index i0 is called a minimal starting point (m.s.p.). In this paper we discuss the problem of finding m.s.p. of a given circular string. Our algorithm finds, in fact, all the m.s.p.'s of a given circular string A of length n by using at most n + ?d2? comparisons. The number d denotes the difference between two successive m.s.p.'s (see Lemma 1.1) and is equal to n if A has a unique m.s.p. Our algorithm improves the result of 3n comparisons given by K. S. Booth. Only constant auxiliary storage is used.  相似文献   
35.
36.
The surfactant templated gold-silver nanowire growth process in a thin solution film was probed by cryo-transmission electron microscopy (cryo-TEM). The increasing surfactant concentration upon film drying appears to induce phase transformations in the film and form a liquid crystalline template for the nanowires growth. High-resolution transmission electron microscopy (HRTEM) and electron holography revealed that the nanowires were polycrystalline with some preferred crystallite orientations and had a roughly cylindrical cross-section. Further improvement of the technique may lead to highly ordered metal nanowire arrays within the surfactant matrix similar to the closely related mesoporous materials.  相似文献   
37.
The reactions of the chemical warfare agents (CWAs) 2,2'-dichloroethyl sulfide (HD), O-ethyl S-2-(diisopropylamino)-ethyl methylphosphonothioate (VX) and isopropyl methylphosphonofluoridate (GB) with various metal oxide-supported quaternary ammonium fluorides (QAF) and/or potassium fluoride (KF) reagents are described. These active sorbents, which were prepared by a modified procedure, include alumina, silica and titania, enriched with "available" (not bound to the surface) fluoride ions. Alumina-based fluoride reagents were found to be more active than their silica or titania counterparts. QAF/Al(2)O(3) reagents, compared to KF/Al(2)O(3), exhibit an exceptional reactivity toward HD, as demonstrated both in reaction rates and product identity. For example, with TBAF, t(1/2) is 15 min for the formation of the elimination product divinyl sulfide (DVS), while with KF, t(1/2) is 10 h for the formation of the hydrolysis product thiodiglycol (TDG). On the other hand, both sorbents reacted similarly against the nerve agents GB or VX. In order to increase the "available" fluoride content on the solid surface, the mixed active sorbent TBAF/KF/Al(2)O(3) (20/20/60) was developed. On this powder, all three CWAs were degraded instantaneously at the low loading of 1 wt% (t(1/2) < 2 min) and rapidly at the higher loadings of 5-10 wt% (t(1/2) of minutes scale). We assume that the relatively large amount of inorganic fluoride (KF) acts synergistically as a reservoir for the more reactive organic fluorides (TBAF). Moreover, the alumina surface hydroxyl groups may also operate as a water reservoir for the hydrolysis of VX or GB. Therefore, TBAF/KF/Al(2)O(3) might be considered as a promising destructive sorbent for CWAs.  相似文献   
38.
Respiration in forest tree stems is an important component of the global carbon cycle. This respiration is traditionally estimated by measurements of the CO(2) efflux from the stem. However, recent studies have suggested that movement of CO(2) in the transpiration stream causes large errors in the respiration estimated by the CO(2) efflux. Here we demonstrate a new approach for determining the ratio of respiration to CO(2) efflux, which is based on specially designed chambers, and combined CO(2) and O(2) measurements. The high accuracy O(2) measurement is performed by mass spectrometric measurement of the O(2)/Ar ratio. Testing the method gave repeatable results which point that in some conditions up to 40% of the respired CO(2) can be carried away from the site of respiration.  相似文献   
39.
The effect of 1,3-dioxolane (DOL) based electrolyte solutions (DOL/LiTFSI and DOL/LiTFSI-LiNO(3)) on the electrochemical performance and surface chemistry of silicon nanowire (SiNW) anodes was systematically investigated. SiNWs exhibited an exceptional electrochemical performance in DOL solutions in contrast to standard alkyl carbonate solutions (EC-DMC/LiPF(6)). Reduced irreversible capacity losses, enhanced and stable reversible capacities over prolonged cycling, and lower impedance were identified with DOL solutions. After 1000 charge-discharge cycles (at 60 °C and a 6 C rate), SiNWs in DOL/LiTFSI-LiNO(3) solution exhibited a reversible capacity of 1275 mAh/g, whereas only 575 and 20 mAh/g were identified in DOL/LiTFSI and EC-DMC solutions, respectively. Transmission electron microscopy (TEM) studies demonstrated the complete and uniform lithiation of SiNWs in DOL-based electrolyte solutions and incomplete, nonuniform lithiation in EC-DMC solutions. In addition, the formation of compact and uniform surface films on SiNWs cycled in DOL-based electrolyte solutions was identified by scanning electron microscopic (SEM) imaging, while the surface films formed in EC-DMC based solutions were thick and nonuniform. X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared (FTIR) spectroscopy were employed to analyze the surface chemistry of SiNWs cycled in EC-DMC and DOL based electrolyte solutions. The distinctive surface chemistry of SiNWs cycled in DOL based electrolyte solutions was found to be responsible for their enhanced electrochemical performances.  相似文献   
40.
The effect of FEC as a co-solvent on the electrochemical performance and surface chemistry of silicon nanowire (SiNW) anodes was thoroughly investigated. Enhanced electrochemical performance was observed for SiNW anodes in alkyl carbonates electrolyte solutions containing fluoroethylene carbonate (FEC). Reduced irreversible capacity losses accompanied by enhanced and stable reversible capacities over prolonged cycling were achieved with FEC-containing electrolyte solutions. TEM studies provided evidence for the complete and incomplete lithiation of SiNW's in FEC-containing and FEC-free electrolyte solutions, respectively. Scanning electron microscopy (SEM) results proved the formation of much thinner and compact surface films on SiNW's in FEC-containing solutions. However, thicker surface films were identified for SiNW electrodes cycled in FEC-free solutions. SiNW electrodes develop lower impedance in electrolyte solutions containing FEC in contrast to standard (FEC-free) solutions. The surface chemistry of SiNW electrodes cycled in FEC-modified and standard electrolytes were investigated using X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared (FTIR) spectroscopy. The impact of FEC as a co-solvent on the electrochemical behavior of SiNW electrodes is discussed herein in light of the spectroscopic and microscopic studies.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号