首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2562篇
  免费   358篇
  国内免费   274篇
化学   1867篇
晶体学   25篇
力学   143篇
综合类   21篇
数学   234篇
物理学   904篇
  2024年   7篇
  2023年   78篇
  2022年   101篇
  2021年   101篇
  2020年   160篇
  2019年   147篇
  2018年   98篇
  2017年   81篇
  2016年   122篇
  2015年   132篇
  2014年   126篇
  2013年   157篇
  2012年   196篇
  2011年   237篇
  2010年   170篇
  2009年   164篇
  2008年   177篇
  2007年   133篇
  2006年   137篇
  2005年   108篇
  2004年   74篇
  2003年   61篇
  2002年   47篇
  2001年   56篇
  2000年   44篇
  1999年   46篇
  1998年   31篇
  1997年   29篇
  1996年   35篇
  1995年   22篇
  1994年   32篇
  1993年   18篇
  1992年   13篇
  1991年   12篇
  1990年   7篇
  1989年   9篇
  1988年   8篇
  1987年   5篇
  1986年   4篇
  1984年   3篇
  1983年   3篇
  1982年   1篇
  1981年   1篇
  1971年   1篇
排序方式: 共有3194条查询结果,搜索用时 31 毫秒
91.
Click chemistry focuses on the development of highly selective reactions using simple precursors for the exquisite synthesis of molecules. Undisputedly, the CuI-catalyzed azide–alkyne cycloaddition (CuAAC) is one of the most valuable examples of click chemistry, but it suffers from some limitations as it requires additional reducing agents and ligands as well as cytotoxic copper. Here, we demonstrate a novel strategy for the azide–alkyne cycloaddition reaction that involves a photoredox electron-transfer radical mechanism instead of the traditional metal-catalyzed coordination process. This newly developed photocatalyzed azide–alkyne cycloaddition reaction can be performed under mild conditions at room temperature in the presence of air and visible light and shows good functional group tolerance, excellent atom economy, high yields of up to 99 %, and absolute regioselectivity, affording a variety of 1,4-disubstituted 1,2,3-triazole derivatives, including bioactive molecules and pharmaceuticals. The use of a recyclable photocatalyst, solar energy, and water as solvent makes this photocatalytic system sustainable and environmentally friendly. Moreover, the azide–alkyne cycloaddition reaction could be photocatalyzed in the presence of a metal-free catalyst with excellent regioselectivity, which represents an important development for click chemistry and should find versatile applications in organic synthesis, chemical biology, and materials science.  相似文献   
92.
A two‐dimensional (2D) carbon nanofilm with uniform artificial nanopores is an ideal material to ultimately suppress the fuel permeation in the proton exchange membrane fuel cells. Graphdiyne has great mechanical strength, high dimensional stability, and controllable nanopores, and has good prospects to play this crucial role. It is found that graphdiyne nanofilm with amino groups and natural nanopores can be easily prepared with high integrity. The aminated graphdiyne has good compatibility with the Nafion matrix owing to the acid–base interaction between them. The excellent comprehensive properties of graphdiyne in selectivity, dimensional stability, and integrity effectively improve the power performance and stability of fuel cells at wide temperature. Our results can be developed into a universal method that can easily realize the selective separation of ions and small molecules, and open a new way for the emerging applications in green energy.  相似文献   
93.
Russian Journal of General Chemistry - The Grubbs–Hoveyda catalysts have a wide range of applications in catalyzed formation of the carbon-carbon double bonds. In this study, several...  相似文献   
94.
95.
Recently, Li-ion batteries (LIBs) have attracted extensive attention owing to their wide applications in portable and flexible electronic devices. Such a huge market for LIBs has caused an ever-increasing demand for excellent mechanical flexibility, outstanding cycling life, and electrodes with superior rate capability. Herein, an anode of self-supported Fe3O4@C nanotubes grown on carbon fabric cloth (CFC) is designed rationally and fabricated through an in situ etching and deposition route combined with an annealing process. These carbon-coated nanotube structured Fe3O4 arrays with large surface area and enough void space can not only moderate the volume variation during repeated Li+ insertion/extraction, but also facilitate Li+/electrons transportation and electrolyte penetration. This novel structure endows the Fe3O4@C nanotube arrays stable cycle performance (a large reversible capacity of 900 mA h g−1 up to 100 cycles at 0.5 A g−1) and outstanding rate capability (reversible capacities of 1030, 985, 908, and 755 mA h g−1 at 0.15, 0.3, 0.75, and 1.5 A g−1, respectively). Fe3O4@C nanotube arrays still achieve a capacity of 665 mA h g−1 after 50 cycles at 0.1 A g−1 in Fe3O4@C//LiCoO2 full cells.  相似文献   
96.
Nonuniform nucleation is one of the major reasons for the dendric growth of metallic lithium, which leads to intractable problems in the efficiency, reversibility, and safety in Li-based batteries. To improve the deposition of metallic Li on Cu substrates, herein, a freestanding current collector (NGDY@CuNW) is formed by coating pyridinic nitrogen-doped graphdiyne (NGDY) nanofilms on 3D Cu nanowires (CuNWs). Theoretical predictions reveal that the introduction of nitrogen atoms in the 2D GDY can enhance the binding energy between the Li atom and GDY, therefore improving the lithiophilicity on the surface for uniform lithium nucleation and deposition. Accordingly, the deposited metallic Li on the NGDY@CuNW electrode exhibits a dendrite-free morphology, resulting in significant improvements in terms of the reversibility with a high coulombic efficiency (CE) and a long lifespan at high current density. Our research provides an efficient method to control the surface property of Cu, which also will be instructive for other metal batteries.  相似文献   
97.
98.
99.
100.
Cucurbitacin B (CuB), one of the most abundant forms of cucurbitacins, is a promising natural anticancer drug candidate. Although the anticancer activity of CuB has been well demonstrated, information regarding the pharmacokinetics is limited. A rapid, selective and sensitive UPLC‐MS/MS for CuB was developed and validated using hemslecin A (HeA) as internal standard (IS). Plasma samples were pre‐treated by liquid–liquid extraction with dichloromethane. Separation was achieved on a reversed‐phase C18 column (50 × 4.6 mm, 5 µm) at 35°C using isocratic elution with water–methanol (25:75, v/v) at a flow rate of 0.3 mL/min. The analytes were monitored by a triple quadrupole tandem mass spectrometer with positive electrospray ionization mode. The calibration curve was linear (r > 0.995) in a concentration range of 0.3–100 ng/mL with a limit of quantification of 0.3 ng/mL. Intra‐ and inter‐day accuracy and precision were validated by percentage relative error and relative standard deviation, respectively, which were both lower than the limit of 15%. This assay was successfully applied to a pharmacokinetic study of CuB in Wistar rats. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号