首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   17803篇
  免费   3132篇
  国内免费   2096篇
化学   12890篇
晶体学   184篇
力学   1041篇
综合类   111篇
数学   1838篇
物理学   6967篇
  2024年   50篇
  2023年   408篇
  2022年   646篇
  2021年   670篇
  2020年   743篇
  2019年   718篇
  2018年   635篇
  2017年   574篇
  2016年   863篇
  2015年   831篇
  2014年   1002篇
  2013年   1268篇
  2012年   1603篇
  2011年   1529篇
  2010年   1066篇
  2009年   992篇
  2008年   1093篇
  2007年   1032篇
  2006年   954篇
  2005年   858篇
  2004年   610篇
  2003年   521篇
  2002年   514篇
  2001年   403篇
  2000年   359篇
  1999年   428篇
  1998年   345篇
  1997年   338篇
  1996年   319篇
  1995年   278篇
  1994年   226篇
  1993年   200篇
  1992年   156篇
  1991年   135篇
  1990年   157篇
  1989年   112篇
  1988年   76篇
  1987年   55篇
  1986年   59篇
  1985年   59篇
  1984年   30篇
  1983年   30篇
  1982年   30篇
  1981年   19篇
  1980年   10篇
  1977年   3篇
  1957年   2篇
  1942年   2篇
  1930年   2篇
  1916年   3篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
901.
Yue  Hangbo  Xu  Chao  Yao  Jiachang  He  Ming  Yin  Guoqiang  Cui  Yingde  Yang  Chufen  Guo  Jianwei 《Cellulose (London, England)》2022,29(10):5869-5881
Cellulose - The development of plant adhesive with good bonding strength, water resistance and thermal stability remains challenging to replace formaldehyde-based adhesive resins that usually...  相似文献   
902.
5-羟甲基糠醛(HMF)的电催化氧化被认为是合成2,5-呋喃二甲酸(FDCA)最环保、经济和有效的方法之一,它可作为聚呋喃二甲酸乙二醇酯(PEF)的生物基前体。在这项工作中,我们通过低温溶剂热法合成了PtRuAgCoNi高熵合金纳米颗粒,并在不改变颗粒结构和组成的情况下进行了简易的处理以去除表面活性剂。负载在碳载体上的合金纳米催化剂无论是否含有表面活性剂在HMF电催化氧化为FDCA的过程中都表现出比商业Pt/C更好的催化性能。且表面活性剂的去除可以进一步提高其电催化性能,表明高熵合金纳米粒子在电催化和绿色化学中具有广阔的应用前景。  相似文献   
903.
Two unknown solution degradants were found during the dissolution testing in 0.1-M HCl for olmesartan medoxomil (OLM) tablets. The structure of the degradants was identified and characterized by liquid chromatography–ultraviolet (LC–UV), liquid chromatography with tandem mass spectrometry (LC–MS/MS), and nuclear magnetic resonance (NMR) and demonstrated to be cyclization of tetrazole and benzene in the olmesartan (OL) and OLM structures. A series of studies including stress studies, simulation studies, and mechanism-based studies were performed to reveal the potential mechanisms that lead to the formation of the unknown degradants. The study results demonstrated that the degradation was catalyzed with radicals that originated from the metal ions leached from the inner surface of high-performance liquid chromatography (HPLC) glass vials with dissolved oxygen under acidic condition. Prerinsing the glass vials with acidic solution dissolved with EDTA can effectively avoid the generation of such oxidative impurities. The present work provides new insights into the understanding of degradation pathways of OLM, which might support the development of OLM tablets.  相似文献   
904.
An advanced dual pH- and temperature-sensitive hydrogel (NASH2.5) was optimally synthesized through modification of N-isopropylacrylamide (NIPAM) hydrogel with introducing 5 mol% acrylic acid (AA) and 2.5 wt% sewage sludge ash (SSA). The swelling kinetic results showed that NASH2.5 exhibited both high equilibrium swelling ratio and swelling rate, which was attributed to the higher porous structure as shown in scanning electron microscope, and the more hydrogen bonding formed inside of the hydrogel as investigated in Fourier transform infrared spectrometer. In addition, its curve was better fitted to the pseudo-second-order model, indicating that the water absorption process was dominated by chemisorption through forming the hydrogen bonding among the water molecules and carboxyl/silanol groups of the hydrogel. Compared with the pure NIPAM hydrogel, the water transport mechanism switched from Case I diffusion to Case II diffusion by introduction of AA and further SSA. Furthermore, through the results of the deswelling kinetics in pH value change (from 9 to 4 and 2, respectively), temperature value change (from 25 to 40, 50, and 60°C, respectively), and dual pH and temperature values changes, NASH2.5 not only presented a high pH sensitivity, but also showed high sensitive to temperature by achieving high water recovery ratio in rapid dehydrated rate. Therefore, the dual stimuli-sensitive hydrogel with the simultaneously high performance of swelling and deswelling would provide a suitable alternative for specific applications such as pollutant adsorption.  相似文献   
905.
Zhang  Yanli  Zhang  Qiang  Wang  Jingxin  Sheng  Li  Wang  Li  Xie  Yingpeng  Hao  Yongsheng  Dong  Liangliang  He  Xiangming 《Journal of Solid State Electrochemistry》2022,26(12):2601-2626
Journal of Solid State Electrochemistry - Iron(II) fluoride (FeF2) is a promising candidate as the cathode material for lithium-ion batteries (LIBs) due to its quite high theoretical energy density...  相似文献   
906.
Metal-sulfur batteries are a promising next-generation energy storage technology, offering high theoretical energy densities with low cost and good sustainability. An active area of research is the development of electrolytes that address unwanted migration of sulfur and intermediate species known as polysulfides during operation of metal-sulfur batteries, a phenomenon that leads to low energy efficiency and short life-spans. A particular class of electrolytes, gel polymer electrolytes, are especially attractive for their ability to repel polysulfides on the basis of structure, electrostatics, and other polymer properties. Herein, within the context of magnesium- and lithium-sulfur batteries, we investigate the impact of gel polymer electrolyte cation solvation capacity, a property related to network dielectric constant and chemistry, on sulfur/polysulfide-polymer interactions, an understudied property-performance relationship. Polymers with lower cation solvation capacity are found to permanently absorb less polysulfide active material, which increases sulfur utilization for Li−S batteries and significantly increases charge efficiency and life-span for Li−S and Mg−S batteries.  相似文献   
907.
Cell membrane chromatography is an effective method for screening bioactive components acting on specific receptors in complex systems, which maintains the biological activity of the membrane receptors and improves screening efficiency. However, traditional cell membrane chromatography suffers from poor stability, resulting in a limited life span and low reproducibility, greatly limiting the application of this method. To address this problem, cyanuric chloride-decorated silica gel was used for the covalent immobilization of the cell membranes. Cyanuric chloride reacts with amino groups on the cell membranes and membrane receptors to form covalent bonds. In this way, the cell membranes are not easy to fall off. The column life of the cyanuric chloride-decorated epidermal growth factor receptor/cell membrane chromatography column was extended to more than 8 days, whereas the column life of the normal cell membrane chromatography column dropped sharply in the first 3 days. A cyanuric chloride-decorated epidermal growth factor receptor/cell membrane chromatography online HPLC-IT-TOF-MSn system was applied for screening drug leads from Trifolium pratense L. One potential drug lead, formononetin, which acts on the epidermal growth factor receptor, was screened. Our strategy of covalently immobilizing cell membrane receptors also improved the stability of cell membrane chromatography.  相似文献   
908.
"透过表面接枝"(grafting-through)是一种聚合物表面改性的新方法,可以显著改善传统grafting-from和grafting-to方法接枝工艺的缺陷,获得兼具高接枝密度和低分散性的聚合物刷产物.本文采用布朗动力学模拟方法,模拟研究了grafting-through方法接枝聚合物刷过程中的主控因素,从微观动力学角度阐明其特有的链增长趋同化效应是保持产物聚合物刷较低分散性的主因.引发效率在grafting-through中可显著提高,且产物聚合物刷的分子量呈现泊松分布.此外,反应中保持高的单体通量,可以同时实现产物聚合物较长的平均链长和较低的分散性,有利于制备性能优异的改性材料.该研究对深入理解grafting-through接枝过程的动力学主控因素,促进grafting-through技术的推广和工艺的改进具有一定的理论指导意义.  相似文献   
909.
Adsorption and activation of dinitrogen (N2) is an indispensable process in nitrogen fixation. Metal nitride species continue to attract attention as a promising catalyst for ammonia synthesis. However, the detailed mechanisms at a molecular level between reactive nitride species and N2 remain unclear at elevated temperature, which is important to understand the temperature effect and narrow the gap between the gas phase system and condensed phase system. Herein, the 14N/15N isotopic exchange in the reaction between tantalum nitride cluster anions Ta314N3- and 15N2 leading to the regeneration of 14N2/14N15N was observed at elevated temperature (393-593 K) using mass spectrometry. With the aid of theoretical calculations, the exchange mechanism and the effect of temperature to promote the dissociation of N2 on Ta3N3? were elucidated. A comparison experiment for Ta314N4-/15N2 couple indicated that only desorption of 15N2 from Ta314N415N2- took place at elevated temperature. The different exchange behavior can be well understood by the fact that nitrogen vacancy is a requisite for the dinitrogen activation over metal nitride species. This study may shed light on understanding the role of nitrogen vacancy in nitride species for ammonia synthesis and provide clues in designing effective catalysts for nitrogen fixation.  相似文献   
910.
A high-temperature proton exchange membrane with high proton conductivity over a wide humidity range still remains a challenge. PBI dendrimer containing triazine rings (TPBI) was synthesized to approach this aim considering its high content of hygroscopic terminal groups and of larger free volume. A novel proton conductor previously synthesized (zirconium 3-sulfopropyl phosphonate, ZrSP) was doped due to its good proton conductivity over a wide humidity range. TPBI was post-crosslinked with a tetrafunctional epoxy resin (N,N,N′,N′-tetraglycidyl-4,4′-diaminodiphenylmethane, TGDDM) to enhance the mechanical stability at low cross-linking degrees, which allowed high doping levels of ZrSP, and thus, high conductivity. The prepared membranes (TPBI-TGDDM/ZrSP) showed good thermal stability, high proton conductivity over wide humidity range, and good dimensional stability. At suitable degrees of branching, TPBI-TGDDM/ZrSP exhibited superior mechanical property, oxidative stability, methanol barrier property, and membrane selectivity than its linear analog (mPBI-TGDDM/ZrSP). As ZrSP instead of PA was applied as the proton conductor, TPBI-TGDDM/ZrSP showed good durability of proton conductivity, especially in comparison with TPBI-TGDDM/PA, which highly retarded decline in conductivity caused by PA leaking. The proton conductivity at 180 °C of TPBI(20)-TGDDM(10)/ZrSP(50) achieved 142, 84.2 and 23.6 mS cm?1 at 100%, 50%, and 0 RH, respectively.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号