首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   182916篇
  免费   30438篇
  国内免费   31094篇
化学   129916篇
晶体学   3579篇
力学   11581篇
综合类   2765篇
数学   23567篇
物理学   73040篇
  2024年   523篇
  2023年   2799篇
  2022年   5931篇
  2021年   5920篇
  2020年   6423篇
  2019年   6542篇
  2018年   5811篇
  2017年   6285篇
  2016年   7857篇
  2015年   8666篇
  2014年   10395篇
  2013年   13803篇
  2012年   15405篇
  2011年   16185篇
  2010年   12376篇
  2009年   12513篇
  2008年   13739篇
  2007年   12164篇
  2006年   11368篇
  2005年   9718篇
  2004年   7704篇
  2003年   6251篇
  2002年   6239篇
  2001年   5446篇
  2000年   5024篇
  1999年   3816篇
  1998年   2865篇
  1997年   2504篇
  1996年   2441篇
  1995年   2186篇
  1994年   2011篇
  1993年   1702篇
  1992年   1626篇
  1991年   1302篇
  1990年   1242篇
  1989年   993篇
  1988年   886篇
  1987年   729篇
  1986年   630篇
  1985年   663篇
  1984年   571篇
  1983年   454篇
  1982年   357篇
  1981年   303篇
  1980年   255篇
  1979年   264篇
  1978年   167篇
  1977年   213篇
  1976年   176篇
  1975年   146篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
51.
52.
A strategy based on covalent organic frameworks for ultrafast ion transport involves designing an ionic interface to mediate ion motion. Electrolyte chains were integrated onto the walls of one-dimensional channels to construct ionic frameworks via pore surface engineering, so that the ionic interface can be systematically tuned at the desired composition and density. This strategy enables a quantitative correlation between interface and ion transport and unveils a full picture of managing ionic interface to achieve high-rate ion transport. Moreover, the effect of interfaces was scaled on ion transport; ion mobility is increased in an exponential mode with the ionic interface. This strategy not only sets a benchmark system but also offers a general guidance for designing ionic interface that is key to systems for energy conversion and storage.  相似文献   
53.
Hierarchically porous metal–organic frameworks (HP-MOFs) are promising in various applications. Most reported HP-MOFs are prepared based on the generation of mesopores in microporous frameworks, and the formed mesopores are connected by microporous channels, limiting the accessibility of mesopores for bulky molecules. A hierarchical structure is formed by constructing microporous MOFs in uninterrupted mesoporous tunnels. Using the confined space in as-prepared mesoporous silica, highly dispersed metal precursors for MOFs are coated on the internal surface of mesoporous tunnels. Ligand vapor-induced crystallization is employed to enable quantitative formation of MOFs in situ, in which sublimated ligands diffuse into mesoporous tunnels and react with metal precursors. The obtained hierarchically porous composites exhibit record-high adsorption capacity for the bulky molecule trypsin. The thermal and storage stability of trypsin is improved upon immobilization on the composites.  相似文献   
54.
A class of acceptor–donor–acceptor chromophoric small-molecule non-fullerene acceptors, 1–4, with difluoroboron(iii) β-diketonate (BF2bdk) as the electron-accepting moiety has been developed. Through the variation of the central donor unit and the modification on the peripheral substituents of the terminal BF2bdk acceptor unit, their photophysical and electrochemical properties have been systematically studied. Taking advantage of their low-lying lowest unoccupied molecular orbital energy levels (from −3.65 to −3.72 eV) and relatively high electron mobility (7.49 × 10−4 cm2 V−1 s−1), these BF2bdk-based compounds have been employed as non-fullerene acceptors in organic solar cells with maximum power conversion efficiencies of up to 4.31%. Moreover, bistable resistive memory characteristics with charge-trapping mechanisms have been demonstrated in these BF2bdk-based compounds. This work not only demonstrates for the first time the use of a boron(iii) β-diketonate unit in constructing non-fullerene acceptors, but also provides more insights into designing organic materials with multi-functional properties.

Boron(iii) β-diketonates have been demonstrated to serve as multi-functional materials in NFA-based OPVs and organic resistive memories.  相似文献   
55.
56.
In this communication, we report the synthesis of small‐sized (<10 nm), water‐soluble, magnetic nanoparticles (MNPs) coated with polyhedral oligomeric silsesquioxanes (POSS), which contain either polyethylene glycol (PEG) or octa(tetramethylammonium) (OctaTMA) as functional groups. The POSS‐coated MNPs exhibit superparamagnetic behavior with saturation magnetic moments (51–53 emu g?1) comparable to silica‐coated MNPs. They also provide good colloidal stability at different pH and salt concentrations, and low cytotoxicity to MCF‐7 human breast epithelial cells. The relaxivity data and magnetic resonance (MR) phantom images demonstrate the potential application of these MNPs in bioimaging.  相似文献   
57.
Mass concentration and isotopic values δ13C and 14C are presented for the water-insoluble refractory carbon(WIRC) component of total suspended particulates(TSP),collected weekly during 2003,as well as from October 2005 to May 2006 at the WMO-GAW Mt.Waliguan(WLG) site.The overall average WIRC mass concentration was(1183±120)ng/m3(n = 79),while seasonal averages were 2081 ±1707(spring),454±205(summer),650±411(autumn),and 1019±703(winter) ng/m3.Seasonal variations in WIRC mass concentrations were consistent with black carbon measurements from an aethalometer,although WIRC concentrations were typically higher,especially in winter and spring.The δ13C PDB value(-25.3 ± 0.8)%.determined for WIRC suggests that its sources are C3 biomass or fossil fuel combustion.No seasonal change in δ13C PDB was evident.The average percent Modern Carbon(pMC) for 14C in WIRC for winter and spring was(67.2 ± 7.7)%(n = 29).Lower pMC values were associated with air masses transported from the area east of WLG,while higher pMC values were associated with air masses from the Tibetan Plateau,southwest of WLG.Elevated pMC values with abnormally high mass concentrations of TSP and WIRC were measured during a dust storm event.  相似文献   
58.
An efficient, atom-economic, oxygen-tolerant, and water-tolerant strategy has been established to synthesize cyano-rich polyesters. Four kinds of organic bases, 1,1,3,3-tetramethylguanidine (TMG), 4-dimethylaminopyridine, triethylamine, and 1,5,7-triazabicyclo[4.4.0]dec-5-ene (TBD) were explored for accelerating Michael addition polymerization of malononitrile and 1,4-butandiol diacrylate. TMG can promote the polymerization efficiently under mild conditions to quantitatively afford polyester with high-molecular weight and moderate polydispersity. The comparison of the kinetic studies of TMG and TBD reveals that TMG shows better catalytic performance, while the catalysis of TBD brings about oligomers in spite of the higher efficiency at early age of the polymerization. Moreover, other diacrylate compounds could also be quantitatively polymerized to afford polyesters with high molecular weight. When dimethacrylate is chose as the monomer, the polymerization becomes sluggish. All the afforded polyesters display programmable thermal and mechanical properties that are closely related to their chemical structures.  相似文献   
59.
We present the fabrication of core-shell-satellite Au@SiO2-Pt nanostructures and demonstrate that LSPR excitation of the core Au nanoparticle can induce plasmon coupling effect to initiate photocatalytic hydrogen generation from decomposition of formic acid. Further studies suggest that the plasmon coupling effect induces a strong local electric field between the Au core and Pt nanoparticles on the SiO2 shell, which enables creation of hot electrons on the non-plasmonic-active Pt nanoparticles to participate hydrogen evolution reaction on the Pt surface. In addition, small SiO2 shell thickness is required in order to obtain a strong plamon coupling effect and achieve efficient photocatalytic activities for hydrogen generation.  相似文献   
60.
The research progress of a novel traffic solution,a submerged floating tunnel(SFT),is reviewed in terms of a study approach and loading scenario.Among existing publications,the buoyancy-weight ratio(BWR) is usually predefined.However,BWR is a critical structural parameter that tremendously affects the dynamic behaviour of not only the tunnel tube itself but also the cable system.In the context of a SFT prototype(SFTP) project in Qiandao Lake(Zhejiang Province,China),the importance of BWR is illustrated by finite element analysis and subsequently,an optimized BWR is proposed within a reasonable range in the present study.In the numerical model,structural damping is identified to be of importance.Rayleigh damping and the corresponding Rayleigh coefficients are attained through a sensitivity study,which shows that the adopted damping ratios are fairly suitable for SFTP.Lastly,the human sense of security is considered by quantifying the comfort index,which helps further optimize BWR in the SFTP structural parameter design.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号