首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   26篇
  免费   1篇
化学   27篇
  2021年   1篇
  2016年   2篇
  2015年   2篇
  2014年   2篇
  2013年   2篇
  2012年   3篇
  2011年   3篇
  2010年   2篇
  2009年   2篇
  2008年   1篇
  2007年   1篇
  2006年   1篇
  2005年   2篇
  2004年   2篇
  2002年   1篇
排序方式: 共有27条查询结果,搜索用时 0 毫秒
11.
A rapid, accurate and precise method for the determination of sudan I-IV in chili products using on-line solid phase extraction and LC-MS has been developed. Chili products were extracted with acetone and the analytes were cleaned up and enriched on an SPE column (C18, 15–40 µm) through on-line SPE. Chromatographic separation was performed on a C18 analytical column (2.1 × 150 mm, 3 µm) with gradient elution programming of 0.1% formic acid in water and 0.1% formic acid in acetonitrile. All four sudan dyes were separated in less than 8 min. Using in-house validation data, linearity coefficients of determination (R2) of more than 0.9997 were obtained. The limits of detection (LOD) and limits of quantitation (LOQ) for sudan I, II and IV were 0.03 and 0.05 mg kg?1, respectively, and 0.04 and 0.1 mg kg?1 for sudan III. The intra- and inter-day recoveries of the four sudan dyes in chili powder were between 90.1–101.6% and 90.2–102.0%, respectively, with relative standard deviation (RSD) between 0.014–0.164% and 0.011–0.202%, respectively. Therefore, this proposed method could be an alternative assay for the determination of sudan I-IV in chili products due to its rapidness, sensitivity, less sample and solvent consumption.  相似文献   
12.
A boron‐doped diamond (BDD) electrode coupled to flow injection analysis (FIA) was firstly developed for determination of N‐acetyl‐L ‐cysteine (NAC) in drug formulations. The effects of experimental parameters including pH, applied potential and scan rate on the response were investigated. FIA amperometry was applied as an automatic method for the quantitative detection of trace amounts of NAC. A wide linear range of 0.5–50 µmol/L and a low detection limit of 10 nmol/L were obtained. The results of amperometric determinations show a very good reproducibility, and the RSD for the measurement based on 10 measurements was <3.7 % and <4.1 % for intra‐ and inter‐day, respectively. The benefits of the proposed method are fast, simple, sensitive and no requirement of complicated operational steps.  相似文献   
13.
A highly sensitive determination of mercury in the presence of Cu(II) using a boron-doped diamond (BDD) thin film electrode coupled with sequential injection–anodic stripping voltammetry (SI–ASV) was proposed. The Cu(II) was simultaneously deposited with Hg(II) in a 0.5 M HCl supporting electrolyte by electrodeposition. In presence of an excess of Cu(II), the sensitivity for the determination of Hg(II) was remarkably enhanced. Cu(II) and Hg(II) were on-line deposited onto the BDD electrode surface at −1.0 V (vs. Ag/AgCl, 3 M KCl) for 150 s with a flow rate of 14 μL s−1. An anodic stripping voltammogram was recorded from −0.4 V to 0.25 V using a frequency of 60 Hz, an amplitude of 50 mV, and a step potential of 10 mV at a stopped flow. Under the optimal conditions, well-defined peaks of Cu(II) and Hg(II) were found at −0.25 V and +0.05 V (vs. Ag/AgCl, 3 M KCl), respectively. The detection of Hg(II) showed two linear dynamic ranges (0.1–30.0 ng mL−1 and 5.0–60.0 ng mL−1). The limit of detection (S/N = 3) obtained from the experiment was found to be 0.04 ng mL−1. The precision values for 10 replicate determinations were 1.1, 2.1 and 2.9% RSD for 0.5, 10 and 20 ng mL−1, respectively. The proposed method has been successfully applied for the determination of Hg(II) in seawater, salmon, squid, cockle and seaweed samples. A comparison between the proposed method and an inductively coupled plasma optical emission spectrometry (ICP-OES) standard method was performed on the samples, and the concentrations obtained via both methods were in agreement with the certified values of Hg(II), according to the paired t-test at a 95% confidence level.  相似文献   
14.
A simple, automatic and practical system for successive determination of albumin and creatinine has been developed by combining sequential injection analysis (SIA) and highly sensitive dye-binding assays. Albumin detection was based on the increase in the absorbance due to complex formation between albumin and eosin Y in acidic media. The absorbance of the complex was monitored at 547 nm. For the creatinine assay, the concentration of creatinine was measured by reaction with alkaline picrate to form a colored product which absorbs at 500 nm. The influences of experimental variables such as effects of pH, reagent concentration, standard/sample volume and interferences were investigated. Under optimal conditions, the automated method showed linearity up to 20 mg L−1 for albumin and 100 mg L−1 for creatinine. The 3σ detection limits were 0.6 and 3.5 mg L−1 for albumin and creatinine, respectively, and the relative standard deviations (n = 10) were 2.49% for 20 mg L−1 albumin, and 3.14% for 20 mg L−1 creatinine. Application of the proposed method to the direct analysis of urinary samples yielded results which agreed with those obtained from the Bradford protein assay and a creatinine enzymatic assay according to a paired t-test. The results obtained should be a step towards developing a fully automated and reliable analytical system for clinical research, which requires direct determination of albumin and creatinine and/or its ratios.  相似文献   
15.
The metathesis of ethylene and 2-pentene was studied as an alternative route for propylene production over Re2O7/γ-Al2O3 and Re2O7/SiO2-Al2O3 catalysts. Both NH3 temperature-programmed desorption (NH3-TPD) and H2 temperature-programmed reduction (H2-TPR) results showed that Re2O7/SiO2-Al2O3 exhibited stronger acidity and weaker metal-support interaction than Re2O7/γ-Al2O3. At 35 60℃, isomerization free metathesis was observed only over Re2O7/γ-Al2O3, suggesting that the formation of metal-carbene metathesis active sites required only weak acidity. Our results suggest that on the Re2O7/SiO2-Al2O3, hydrido-rhenium species ([Re]-H) were formed in addition to the metathesis active sites, resulting in the isomerization of the initial 1-butene product into 2-butenes. A subsequent secondary metathesis reaction between these 2-butenes and the excess ethylene could explain the enhanced yields of propylene observed. The results demonstrate the potential for high yield of propylene from alternative feedstocks.  相似文献   
16.
In this report, we aimed to extend our previous efforts toward the evaluation of sulfonamides (SAs) with a boron-doped diamond (BDD) electrode. We improved this method by reducing the analysis time using a monolithic column coupled with amperometric detection to determine seven sulfonamides (sulfaguanidine, sulfadiazine, sulfamethazine, sulfamonomethoxine, sulfamethoxazole, sulfadimethoxine and sulfaquinoxaline). Because of its rapid separation, low back-pressure and high separation efficiency compared to a particle-packed column, a monolithic column (100 mm × 4.6 mm) was used for sulfonamide separation. Chromatographic separation was performed in less than 8 min. The analysis was carried out using phosphate buffer (0.1 M, pH 3): acetonitrile: methanol in a ratio of 80:15:5 (v/v/v) as the mobile phase with a flow rate of 1.5 mL min−1. The optimal detection potential using hydrodynamic voltammetry was found to be 1.2 V versus Ag/AgCl. The method was applied to determine seven sulfonamides in shrimp after sample preparation by solid-phase extraction. The recoveries of the sulfonamides in spiked shrimp samples at 1.5, 5 and 10 μg g−1 were in the range of 81.7 to 97.5% with a relative standard deviation (R.S.D.) between 1.0 and 4.6%. Our methodology produced results that were highly correlated with HPLC-MS data. Therefore, we propose a method that can be used for the rapid, selective and sensitive evaluation of sulfonamides in contaminated food.  相似文献   
17.
With recent advances in nanotechnology making more easily available the novel chemical and physical properties of metal nanoparticles (NPs), these have become extremely suitable for creating new sensing assays. Many kinds of NPs, including metal, metal-oxide, semiconductor and even composite-metal NPs, have been used for constructing electrochemical sensors. This article reviews the progress of NP-based electrochemical detection in recent applications, especially in bioanalysis, and summarizes the main functions of NPs in conventional and miniaturized systems. All references cited here generally show one or more of the following characteristics: a low detection limit, good signal amplification and simultaneous-detection capabilities.  相似文献   
18.
A method for the simultaneous determination of Pb(II), Cd(II), and Zn(II) at low μg L−1 concentration levels by sequential injection analysis-anodic stripping voltammetry (SIA-ASV) using screen-printed carbon nanotubes electrodes (SPCNTE) was developed. A bismuth film was prepared by in situ plating of bismuth on the screen-printed carbon nanotubes electrode. Operational parameters such as ratio of carbon nanotubes to carbon ink, bismuth concentration, deposition time and flow rate during preconcentration step were optimized. Under the optimal conditions, the linear ranges were found to be 2-100 μg L−1 for Pb(II) and Cd(II), and 12-100 μg L−1 for Zn(II). The limits of detection (Sbl/S = 3) were 0.2 μg L−1 for Pb(II), 0.8 μg L−1 for Cd(II) and 11 μg L−1 for Zn(II). The measurement frequency was found to be 10-15 stripping cycle h−1. The present method offers high sensitivity and high throughput for on-line monitoring of trace heavy metals. The practical utility of our method was also demonstrated with the determination of Pb(II), Cd(II), and Zn(II) by spiking procedure in herb samples. Our methodology produced results that were correlated with ICP-AES data. Therefore, we propose a method that can be used for the automatic and sensitive evaluation of heavy metals contaminated in herb items.  相似文献   
19.
A flow injection with pulsed amperometric detection for determination of doxycycline or chlortetracycline in pharmaceutical formulations is described. Doxycycline or chlortetracycline were studied at a gold rotating disk electrode with cyclic voltammetry as a function of pH of supporting electrolyte solution. The optimized PAD waveform parameters were obtained with a flow injection system. The optimized pulsed conditions of doxycycline were 1150 mV (versus Ag/AgCl reference electrode) detection potential (Edet) for 220 ms (150 ms delay time and 70 ms integration time), 1500 mV (versus Ag/AgCl reference electrode) oxidation potential (Eoxd) for 70 ms oxidation time (toxd) and 250 mV (versus Ag/AgCl reference electrode) reduction potentail (Ered) for 400 ms reactivation time (tred). The optimized pulsed conditions of chlortetracycline were 1050 mV (versus Ag/AgCl reference electrode) detection potential (Edet) for 300 ms (200 ms delay time and 100 ms integration time), 1300 mV (versus Ag/AgCl reference electrode) oxidation potential (Eoxd) for 70 ms oxidation time (toxd) and 250 mV (versus Ag/AgCl reference electrode) reduction potentail (Ered) for 400 ms reactivation time (tred). The optimized PAD waveform was applied to the determination of doxycycline hydrochloride and chlortetracycline hydrochloride standard solution and in pharmaceutical formulations. The linear dynamic ranges of doxycycline hydrochloride and chlortetracycline hydrochloride were 1 μM–0.1 mM. The sensitivity of this method was found to be 23 μA/mM for doxycycline hydrochloride and 33.76 μA/mM for chlortetracycline hydrochloride. The detection limit for both compounds is 1 μM. The doxycycline hydrochloride and chlortetracycline hydrochloride content in commercially available tablet dosage forms by the proposed method was comparable to those specified by the manufacturer.  相似文献   
20.
A novel paper-based analytical device (PAD) coupled with a silver nanoparticle-modified boron-doped diamond (AgNP/BDD) electrode was first developed as a cholesterol sensor. The AgNP/BDD electrode was used as working electrode after modification by AgNPs using an electrodeposition method. Wax printing was used to define the hydrophilic and hydrophobic areas on filter paper, and then counter and reference electrodes were fabricated on the hydrophilic area by screen-printing in house. For the amperometric detection, cholesterol and cholesterol oxidase (ChOx) were directly drop-cast onto the hydrophilic area, and H2O2 produced from the enzymatic reaction was monitored. The fabricated device demonstrated a good linearity (0.39 mg dL−1 to 270.69 mg dL−1), low detection limit (0.25 mg dL−1), and high sensitivity (49.61 μA mM−1 cm−2). The precision value for ten replicates was 3.76% RSD for 1 mM H2O2. In addition, this biosensor exhibited very high selectivity for cholesterol detection and excellent recoveries for bovine serum analysis (in the range of 99.6–100.8%). The results showed that this new sensing platform will be an alternative tool for cholesterol detection in routine diagnosis and offers the advantages of low sample/reagent consumption, low cost, portability, and short analysis time.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号