首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   474篇
  免费   12篇
  国内免费   5篇
化学   227篇
晶体学   2篇
力学   19篇
数学   55篇
物理学   188篇
  2021年   3篇
  2018年   3篇
  2016年   5篇
  2015年   10篇
  2014年   3篇
  2013年   17篇
  2012年   14篇
  2011年   12篇
  2010年   10篇
  2009年   14篇
  2008年   18篇
  2007年   19篇
  2006年   27篇
  2005年   19篇
  2004年   15篇
  2003年   13篇
  2002年   22篇
  2001年   16篇
  2000年   14篇
  1999年   8篇
  1998年   5篇
  1997年   8篇
  1996年   6篇
  1995年   12篇
  1994年   19篇
  1993年   21篇
  1992年   24篇
  1991年   6篇
  1990年   4篇
  1988年   5篇
  1987年   5篇
  1985年   7篇
  1984年   8篇
  1983年   12篇
  1982年   5篇
  1981年   5篇
  1980年   4篇
  1978年   5篇
  1977年   5篇
  1976年   6篇
  1975年   6篇
  1974年   6篇
  1973年   4篇
  1972年   4篇
  1968年   3篇
  1967年   2篇
  1961年   2篇
  1933年   2篇
  1930年   2篇
  1919年   2篇
排序方式: 共有491条查询结果,搜索用时 250 毫秒
131.
132.
A model for the quantitative treatment of molecular systems possessing mixed valence excited states is introduced and used to explain observed spectroscopic consequences. The specific example studied in this paper is 1,4-bis(2-tert-butyl-2,3-diazabicyclo[2.2.2]oct-3-yl)-2,3,5,6-tetramethylbenzene-1,4-diyl dication. The lowest energy excited state of this molecule arises from a transition from the ground state where one positive charge is associated with each of the hydrazine units, to an excited state where both charges are associated with one of the hydrazine units, that is, a Hy-to-Hy charge transfer. The resulting excited state is a Class II mixed valence molecule. The electronic emission and absorption spectra, and resonance Raman spectra, of this molecule are reported. The lowest energy absorption band is asymmetric with a weak low-energy shoulder and an intense higher energy peak. Emission is observed at low temperature. The details of the absorption and emission spectra are calculated for the coupled surfaces by using the time-dependent theory of spectroscopy. The calculations are carried out in the diabatic basis, but the nuclear kinetic energy is explicitly included and the calculations are exact quantum calculations of the model Hamiltonian. Because the transition involves the transfer of an electron from the hydrazine on one side of the molecule to the hydrazine on the other side and vice versa, the two transitions are antiparallel and the transition dipole moments have opposite signs. Upon transformation to the adiabatic basis, the dipole moment for the transition to the highest energy adiabatic surface is nonzero, but that for the transition to the lowest surface changes sign at the origin. The energy separation between the two components of the absorption spectrum is twice the coupling between the diabatic basis states. The bandwidths of the electronic spectra are caused by progressions in totally symmetric modes as well as progressions in the modes along the coupled coordinate. The totally symmetric modes are modeled as displaced harmonic oscillators; the frequencies and displacements are determined from resonance Raman spectra. The absorption, emission, and Raman spectra are fit simultaneously with one parameter set. The coupling in the excited electronic state H(ab)(ex) is 2000 cm(-1). Excited-state mixed valence is expected to be an important contributor to the electronic spectra of many organic and inorganic compounds. The energy separations and relative intensities enable the excited-state properties to be calculated as shown in this paper, and the spectra provide new information for probing and understanding coupling in mixed valence systems.  相似文献   
133.
The synthesis of composite latex particles possessing core–shell and gradient morphologies, respectively, using seeded starve‐fed semibatch emulsion polymerization of styrene (St) and methyl methacrylate (MMA) is presented. The focus is on the effect of the monomer feed order on the particle morphology development. The particle morphology is assessed using a novel approach which entails comparing the experimental surface composition as a function of polymerization time (particle growth) obtained by X‐ray photoelectron spectroscopy with the predicted surface composition using a mass balance mathematical model. Both types of composite latexes (core–shell and gradient) feature changes with polymerization time in the oxygen/carbon surface composition which enables one to track the morphology development. Differential scanning calorimetry is also implemented to analyze the extent of phase separation. The monomer feed order is shown to play a crucial role—under the present conditions, gradient and core–shell particles are obtained if the feed order is St/MMA (St fed first), but not if the feed order is reversed. These findings illustrate that thermodynamic factors are important, given that thermodynamically it is more favorable for MMA‐rich chains to occupy the oil–water interface to reduce the interfacial tension. Systems where St is the second stage monomer lead to mixed structures rather than the targeted core–shell or gradient morphology with St‐rich chains at the particle surface. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 2513–2526  相似文献   
134.
Label-free cell separation and sorting in microfluidic systems   总被引:2,自引:0,他引:2  
Cell separation and sorting are essential steps in cell biology research and in many diagnostic and therapeutic methods. Recently, there has been interest in methods which avoid the use of biochemical labels; numerous intrinsic biomarkers have been explored to identify cells including size, electrical polarizability, and hydrodynamic properties. This review highlights microfluidic techniques used for label-free discrimination and fractionation of cell populations. Microfluidic systems have been adopted to precisely handle single cells and interface with other tools for biochemical analysis. We analyzed many of these techniques, detailing their mode of separation, while concentrating on recent developments and evaluating their prospects for application. Furthermore, this was done from a perspective where inertial effects are considered important and general performance metrics were proposed which would ease comparison of reported technologies. Lastly, we assess the current state of these technologies and suggest directions which may make them more accessible.  相似文献   
135.
Human body is greatly exposed to aluminum due to its high abundance in the environment. This nonessential metal is a threat to the patients of chronic renal disorders, as it is easily retained in their plasma and quickly accumulates in different tissues. Thus, there is great need to remove it from the aqueous environment. In this study, Al3+ imprinted semiinterpenetrating polymer network (semi-IPN)-based cryogel composite was prepared and applied for the purification of environmental and drinking water samples from aluminum. Poly (2-hydroxyethyl methacrylate) (pHEMA) discs were produced via cryogenic treatment and imprinted semi-IPN was introduced to the 3-(trimethoxysilyl) propyl acrylatemodified macroporous cryogel discs. The adsorption properties and selectivity of the aluminum (III) imprinted semi-IPN cryogel composite were studied in detail. The imprinted semi-IPN cryogel composite showed good selectivity towards aluminum (III) ions with the imprinting factor (IF) of 76.4 in the presence of competing copper (II), nickle (II), and iron (III) ions. The maximum adsorption capacity of 271 μmol g-1 was obtained for aluminum (III) at pH 7.0 within 10 min using imprinted semi-IPN cryogel composite. The good selectivity and reusability of aluminum (III)-imprinted semi-IPN cryogel composite makes this material an eligible candidate for the purification of drinking water from aluminum (III) leaving important minerals remained in the water.  相似文献   
136.
137.
138.
Making and breaking : Stable, functional micrometer‐sized emulsion droplets can be assembled into various complex macroscopic liquid structures (see picture). The hierarchical assembly process is mediated by interactions between polymeric surfactant molecules located on the droplet surfaces. These interdroplet interactions are reversible, therefore these “engineered emulsions” can be readily disassembled by using a simple pH switch.

  相似文献   

139.
C U soon : Clusters containing 60, 44, and 36 uranyl peroxide hydroxide polyhedra (see picture) adopt fullerene topologies of maximum symmetry. The largest of these, denoted U60, is topologically identical to C60 with no pentagonal adjacencies and the highest possible symmetry. U44 adopts the topology with maximum symmetry rather than that with the lowest number of pentagonal adjacencies.

  相似文献   

140.
Saturated absorption spectroscopy is performed on the acetylene nu(1) + nu(3) band near 1532 nm inside photonic bandgap fibers of small (approximately 10 microm) and large (approximately 20 microm) core diameters. The observed linewidths are narrower in the 20 microm fiber and vary from 20 to 40 MHz depending on pressure and power. Variations in the background light transmission, attributed by others to surface modes, are significantly reduced in the 20 microm fiber. The optimum signal for use as a frequency reference in a 0.8 m long, 20 microm diameter fiber is found to occur at about 0.5 torr for 30 mW of pump power. The saturation power is found by modeling the propagation and attenuation of light inside the fiber.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号