首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5265篇
  免费   105篇
  国内免费   32篇
化学   3853篇
晶体学   58篇
力学   78篇
数学   246篇
物理学   1167篇
  2022年   21篇
  2021年   45篇
  2020年   67篇
  2019年   62篇
  2018年   56篇
  2017年   35篇
  2016年   69篇
  2015年   67篇
  2014年   96篇
  2013年   212篇
  2012年   227篇
  2011年   268篇
  2010年   179篇
  2009年   183篇
  2008年   283篇
  2007年   310篇
  2006年   291篇
  2005年   258篇
  2004年   234篇
  2003年   219篇
  2002年   214篇
  2001年   136篇
  2000年   141篇
  1999年   106篇
  1998年   78篇
  1997年   69篇
  1996年   74篇
  1995年   59篇
  1994年   53篇
  1993年   65篇
  1992年   61篇
  1991年   60篇
  1990年   41篇
  1989年   63篇
  1988年   64篇
  1987年   56篇
  1986年   40篇
  1985年   66篇
  1984年   75篇
  1983年   57篇
  1982年   69篇
  1981年   52篇
  1980年   46篇
  1979年   67篇
  1978年   61篇
  1977年   70篇
  1976年   30篇
  1975年   40篇
  1974年   43篇
  1973年   29篇
排序方式: 共有5402条查询结果,搜索用时 15 毫秒
101.
Ab initio SCF MO calculations have been carried out on benzene + TCNE (tetracyanoethylene) and naphthalene + TCNE complexes with the STO -3G, STO -3G π-split (STO -3G for π orbitals and a split basis for π orbitals), and 4–31G basis sets. The interaction energy, gross charges, dipole moment, and the electron density in the middle plane of the complexes have also been evaluated. The STO -3G π-split basis set is appropriate for the calculation of large π–π stacking complexes from two points of view, production of reliable results and ease of computations. The approximation scheme based on the semiorthogonalized orgitals is revealed to be very efficient to save CPU time and storage in such calculations. The stable conformation and the charge-transfer interaction of the two complexes are discussed on the basis of the calculated quantities.  相似文献   
102.
Novel pyrimidine to pyrimidine transformation reactions are described. 1,3-Dimethyl-(or diethyl)-uracil(1) are converted into isocytosine, 2-thiouracil or uracil derivatives by treatment with guanidine, thiourea or urea, respectively. The latter two cases require base catalysis. The effects of some substituents at C-5 and C-6 of 1,3-dialkylated uracils (1a → 1e) on this transformation were examined and a plausible mechanism is offered for their reaction. The utility of this reaction is exemplified by the facile two-step conversion of pseudouridine into the anlileukemic agent, pseudoisocytidine, in good overall yield.  相似文献   
103.
A NKT cell repertoire is characterized by the expression of the Valpha19-Jalpha26 invariant TCR alpha chain (Valpha19 NKT cell). This repertoire, as well as a well-established Valpha14-Jalpha281 invariant TCR alpha(+) NKT cell subset (Valpha14 NKT cell), has been suggested to have important roles in the regulation of the immune system and, thus, is a major therapeutic target. Here, we attempted to find specific antigens for Valpha19 NKT cells. Valpha19 as well as Valpha14 NKT cells exhibited reactivity to alpha-galactosyl ceramide (alpha-GalCer). Thus, a series of monoglycosyl ceramides with an axially oriented glycosidic linkage between the sugar and ceramide moiety were synthesized and their antigenicity to Valpha19 NKT cells was determined by measuring their immune responses in culture with glycolipids. Comprehensive examinations revealed substantial antigenic activity for Valpha19 NKT cells by alpha-mannosyl ceramide.  相似文献   
104.
The dramatic changes of the lifetimes of the charge-separated (CS) states were confirmed in zinc porphyrin (ZnP)-oligothiophene (nT)-fullerene (C(60)) linked triads (ZnP-nT-C(60)) with the solvent polarity. After the selective excitation of the ZnP moiety of ZnP-nT-C(60), an energy transfer took place from the (1)ZnP moiety to the C(60) moiety, generating ZnP-nT-(1)C(60). In polar solvents, the CS process also took place directly via the (1)ZnP moiety, generating ZnP(*+)-nT-C(60)(*-), as well as the energy transfer to the C(60) moiety. After this energy transfer, an indirect CS process took place from the (1)C(60) moiety. In the less polar solvent anisole, the radical cation (hole) of ZnP(*+)-nT-C(60)(*-) shifted to the nT moiety; thus, the nT moiety behaves as a cation trapper, and the rates of the hole shift were evaluated to be in the order of 10(8) s(-1); then, the final CS states ZnP-nT(*+)-C(60)(*-) were lasting for 6-7 mus. In the medium polar solvent o-dichlorobenzene (o-DCB), ZnP-nT(*+)-C(60)(*-) and ZnP(*+)-nT-C(60)(*-) were present as an equilibrium, because both states have almost the same thermodynamic stability. This equilibrium resulted in quite long lifetimes of the CS states (450-910 mus) in o-DCB. In the more polar benzonitrile, the generation of ZnP-nT(*+)-C(60)(*-) was confirmed with apparent short lifetimes (0.6-0.8 mus), which can be explained by the fast hole shift to more stable ZnP(*+)-nT-C(60)(*-) followed by the faster charge recombination. It was revealed that the relation between the energy levels of two CS states, which strongly depend on the solvent polarity, causes dramatic changes of the lifetimes of the CS states in ZnP-nT-C(60); that is, the most appropriate solvents for the long-lived CS state are intermediately polar solvents such as o-DCB. Compared with our previous data for H(2)P-nT-C(60), in which H(2)P is free-base porphyrin, the lifetimes of the CS states of ZnP-nT-C(60) are approximately 30 times longer than those in o-DCB.  相似文献   
105.
OH(+) is an extraordinarily strong oxidant. Complexed forms (L--OH(+)), such as H(2)OOH(+), H(3)NOH(+), or iron-porphyrin-OH(+) are the anticipated oxidants in many chemical reactions. While these molecules are typically not stable in solution, their isolation can be achieved in the gas phase. We report a systematic survey of the influence on L on the reactivity of L--OH(+) towards alkanes and halogenated alkanes, showing the tremendous influence of L on the reactivity of L--OH(+). With the help of with quantum chemical calculations, detailed mechanistic insights on these very general reactions are gained. The gas-phase pseudo-first-order reaction rates of H(2)OOH(+), H(3)NOH(+), and protonated 4-picoline-N-oxide towards isobutane and different halogenated alkanes C(n)H(2n+1)Cl (n=1-4), HCF(3), CF(4), and CF(2)Cl(2) have been determined by means of Fourier transform ion cyclotron resonance measurements. Reaction rates for H(2)OOH(+) are generally fast (7.2x10(-10)-3.0x10(-9) cm(3) mol(-1) s(-1)) and only in the cases HCF(3) and CF(4) no reactivity is observed. In contrast to this H(3)NOH(+) only reacts with tC(4)H(9)Cl (k(obs)=9.2x10(-10)), while 4-CH(3)-C(5)H(4)N-OH(+) is completely unreactive. While H(2)OOH(+) oxidizes alkanes by an initial hydride abstraction upon formation of a carbocation, it reacts with halogenated alkanes at the chlorine atom. Two mechanistic scenarios, namely oxidation at the halogen atom or proton transfer are found. Accurate proton affinities for HOOH, NH(2)OH, a series of alkanes C(n)H(2n+2) (n=1-4), and halogenated alkanes C(n)H(2n+1)Cl (n=1-4), HCF(3), CF(4), and CF(2)Cl(2), were calculated by using the G3 method and are in excellent agreement with experimental values, where available. The G3 enthalpies of reaction are also consistent with the observed products. The tendency for oxidation of alkanes by hydride abstraction is expressed in terms of G3 hydride affinities of the corresponding cationic products C(n)H(2n+1) (+) (n=1-4) and C(n)H(2n)Cl(+) (n=1-4). The hypersurface for the reaction of H(2)OOH(+) with CH(3)Cl and C(2)H(5)Cl was calculated at the B3 LYP, MP2, and G3(m*) level, underlining the three mechanistic scenarios in which the reaction is either induced by oxidation at the hydrogen or the halogen atom, or by proton transfer.  相似文献   
106.
The carbonylation of alkanes 1 under radical‐reaction conditions was examined by using ethynyl triflone A as the unimolecular chain‐transfer (UMCT) reagent. Good to moderate yields of ethynyl ketones 2 were prepared by means of this three‐component coupling reaction. Higher CO pressures as well as lower concentrations of triflone A improved the efficiency of the reaction over the direct addition, the latter leading to alkylated ethynes 3 . In contrast to the reaction with A , the reaction of cyclohexane ( 1a ) with allyl triflone B (= ethyl 2‐methylene‐3‐[(trifluoromethyl)sulfonyl]propanoate) in the presence of CO gave a mixture of carbonylation products, including 8a formed from two molecules each of cyclohexane, CO, and allyl triflone B .  相似文献   
107.
(mu-Hydroxo or oxo)(mu-1,2-peroxo)diiron(III) complexes having a tetradentate tripodal ligand (L) containing a carboxylate sidearm [Fe2(mu-OH or mu-O)(mu-O2)(L)2]n+ were synthesized as models for peroxo-intermediates of non-heme diiron proteins and characterized by various physicochemical measurements including X-ray analysis, which provide fundamental structural and spectroscopic insights into the peroxodiiron(III) complexes.  相似文献   
108.
109.
Secondary propene ozonide and isobutene ozonide were formed in the gas-phase ozonolysis of ethene with added acetaldehyde and acetone, respectively. Combined with the formation of hydroperoxymethyl formate and methoxymethyl hydroperoxide in the ethene-ozone reaction system in the presence of HCOOH and CH3OH, respectively, formation of the secondary ozonides reveals a close similarity between the gas-phase and the liquid-phase ozonolysis of alkenes.  相似文献   
110.
Colloidal adsorption and spontaneous ordering of adsorbed particles on a substrate was simulated using a three-dimensional simulation model for colloidal dispersion system with an adsorptive surface under a specified bulk concentration, where the particle-particle and particle-substrate interactions were modeled on the DLVO theory. The key process for order formation is considered to be the adsorption of a particle that induces the transition from incomplete order to perfect order, and is found to involve a stochastic nature due to an energy barrier which must be overcome for the system to reach ordered state. Also, a model was developed to predict the energy barrier for order formation based on direct observation of the key process. Further, a model to describe the stochastic nature of the process was developed and its quantitative validity was demonstrated. Through the examination of the key process, it is concluded that the mechanism of the order formation is composed of two successive processes and the rate-determining step varies depending on the ionic strength.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号