首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1525篇
  免费   21篇
  国内免费   13篇
化学   892篇
晶体学   6篇
力学   24篇
数学   309篇
物理学   328篇
  2021年   20篇
  2020年   26篇
  2019年   15篇
  2018年   13篇
  2016年   24篇
  2015年   16篇
  2014年   25篇
  2013年   57篇
  2012年   58篇
  2011年   68篇
  2010年   24篇
  2009年   31篇
  2008年   48篇
  2007年   69篇
  2006年   58篇
  2005年   63篇
  2004年   48篇
  2003年   46篇
  2002年   45篇
  2001年   31篇
  2000年   42篇
  1999年   24篇
  1998年   31篇
  1997年   13篇
  1996年   37篇
  1995年   20篇
  1994年   24篇
  1993年   38篇
  1992年   31篇
  1991年   23篇
  1990年   36篇
  1989年   25篇
  1988年   28篇
  1987年   25篇
  1986年   15篇
  1985年   23篇
  1984年   23篇
  1983年   20篇
  1982年   16篇
  1981年   27篇
  1980年   10篇
  1979年   19篇
  1978年   24篇
  1977年   18篇
  1976年   21篇
  1975年   19篇
  1974年   18篇
  1973年   16篇
  1969年   8篇
  1968年   10篇
排序方式: 共有1559条查询结果,搜索用时 15 毫秒
151.
Crystalline ternary inclusion monolayers consisting of a two-dimensional hydrogen-bonded host network of guanidinium (G) ions and organosulfonate (S) amphiphiles, and biphenylalkane guests, can be generated at the air-water interface through synergistic structural enforcement by hydrogen bonding and host-guest packing. Surface pressure-area isotherms of the 4'-hexadecylbiphenyl-4-sulfonate (C16BPS) amphiphile in the presence of G, with or without guest, are characterized by lift-off molecular areas expected for the GS sheet based on single-crystal X-ray structures of homologous bulk crystals. Intercalation of biphenylalkane guests (4-C(n)()H(2)(n)()(+1)-C(6)H(4)-C(6)H(5), n = 1, 4, 6, 10, 16; denoted CnBP) between organosulfonate hydrophobes, which define pocketlike cavities in the GS monolayer host, afford ternary inclusion monolayers with a 1:1 host-guest stoichiometry. These inclusion monolayers are less compressible than the guest-free host, consistent with dense packing of the biphenylalkane moieties of the host and the biphenylalkane guests. The inclusion monolayers are distinguished from the amorphous guest-free host and from selected guanidinium-free mixed monolayers by structural characterization with grazing-angle incidence X-ray diffraction (GIXD). The GIXD data for the ternary (G)C16BPS:C16BP and (G)C16BPS:C6BP inclusion monolayers obtained upon compression are consistent with a rectangular unit cell. The dimensions of these unit cells and refinement of the GIXD data suggest a "rotated shifted ribbon" GS hydrogen-bonding motif similar to that observed in some bulk GS crystals, including (G)(ethylbiphenylsulfonate). GIXD reveals that (G)C16BPS:C16BP and (G)C16BPS:C6BP are more crystalline than the corresponding guanidinium-free mixed monolayers. The (G)C16BPS:C6BP inclusion monolayer is stable upon compression, even though the alkyl-alkyl host-guest interactions are reduced due to the shorter hexyl substituents of the guest, demonstrating an important reinforcing role for the hydrogen-bonded GS sheet. The structure of a C16BPS:tetracosane (C24) mixed monolayer is independent of G; the unit cell symmetry and dimensions suggest a structure governed by alkyl-alkane interactions that prohibit formation of a GS network. These results illustrate that the existence of ternary inclusion monolayers with an intact GS network requires guest molecules that are structurally homologous with the hydrophobes of the host, in this case biphenylalkanes. The observation of these inclusion compounds suggests an approach for introducing functional nonamphiphilic molecules to an air-water interface through inclusion in a well-defined host.  相似文献   
152.
153.
It is apparent that, in electro-chromatographic separations, the change of area undergone by the initial spot of test solution plays a part in the final interpretation of results almost as important as the actual movement of the centre of the spot.Several interesting facts have emerged from this research concerning the role of the carrier electrolyte on tlie movement, the spot size, and the stability of complex salts.  相似文献   
154.
Hydrogen-bonded organic frameworks (HOFs) with low densities and high porosities are rare and challenging to design because most molecules have a strong energetic preference for close packing. Crystal structure prediction (CSP) can rank the crystal packings available to an organic molecule based on their relative lattice energies. This has become a powerful tool for the a priori design of porous molecular crystals. Previously, we combined CSP with structure-property predictions to generate energy-structure-function (ESF) maps for a series of triptycene-based molecules with quinoxaline groups. From these ESF maps, triptycene trisquinoxalinedione (TH5) was predicted to form a previously unknown low-energy HOF (TH5-A) with a remarkably low density of 0.374 g cm−3 and three-dimensional (3D) pores. Here, we demonstrate the reliability of those ESF maps by discovering this TH5-A polymorph experimentally. This material has a high accessible surface area of 3,284 m2 g−1, as measured by nitrogen adsorption, making it one of the most porous HOFs reported to date.  相似文献   
155.
A quantitative study was undertaken of the anisotropy of low‐strain mechanical behavior for specially oriented polyethylene with controlled crystalline and lamellar orientation. The samples were prepared by the die drawing of injection‐molded rods of polyethylene and annealing. This produced a parallel lamellar structure for which a simple, three‐dimensional composite laminate model could be used to calculate the expected anisotropy. Experimental data, including X‐ray strain measurements of the lateral crystalline elastic constants, showed good quantitative agreement with the model prediction. The X‐ray strain measurements confirmed that the amorphous regions exert large constraints on the crystalline phase in the lateral directions, where an order of magnitude difference was found between the measured apparent lateral crystalline compliances in the lamellar‐stack sample and the expected values for a perfect crystal. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 755–764, 2000  相似文献   
156.
The syntheses of several new simple negative, a simple positive, and multiple negative photochromes containing the dihydropyrene-cyclophanediene photochromic system are described. The photo-openings of the negative photochromes, the [e]-annelated benzo (7), naphtho (9), anthro (11), furano (19), and triphenyleno (15) derivatives of the parent 2,7-di-tert-butyl-trans-10b,10c-dimethyl-dihydropyrene (5), as well as its 4,5-dibromo derivative (13), are described to give the corresponding cyclophanedienes, as well as their photoclosures and thermal closures back to the dihydropyrenes. These are compared to the results obtained for the positive photochrome dibenzo[e,l]dihydropyrene (21) and to the bis(dihydropyreno)chrysene (44) and the (dihydropyrenobenzo)(benzo)metacyclophanediene (47) photochromes, which have more than one photochromic switch present and thus have more than a simple "on-off" state. Thermodynamic data are obtained for the thermal closing reactions. The anthrodihydropyrene (12) has the fastest thermal closing (tau(1/2) = 20 min), while the furanodihydropyrene (19') has the slowest (tau(1/2) = 63 h) at 46 degrees C. An electrochemical readout of the state of the switch is demonstrated for the benzodihydropyrene (7).  相似文献   
157.
158.
At least one Holy Grail for many academic researchers and pharmaceutical research divisions alike has been to identify therapeutically useful selective PI3K inhibitors. There are several different but closely related PI3Ks which are thought to have distinct biological roles. Until now, however, researchers have been frustrated by poor selectivity of the available pharmacological inhibitors, which are unable to distinguish the different isoforms of PI3K adequately. Fortunately, recently published work gives cause for optimism; there are now several patent specifications published that describe new PI3K inhibitors, including some that are more selective for the delta isoform of PI3K. Given the involvement of PI3Ks in a plethora of biological settings, such isoform-selective inhibitors may have immense potential use for the treatment of patients with inflammatory and autoimmune disorders as well as cancer and cardiovascular diseases.  相似文献   
159.
Sequence-specific DNA recognition can be achieved by oligonucleotides that bind to the major groove of oligopyrimidine x oligopurine sequences. These intermolecular structures could be used to modulate gene expression and to create new tools for molecular biology. Here we report the synthesis and biochemical characterization of triple helix-specific DNA cleaving reagents. It is based on the previously reported triplex-specific ligands, benzo[e]pyridoindole (BePI) and benzo[g]pyridoindole (BgPI), covalently attached to ethylenediaminotetraacetic acid (EDTA). In the presence of iron, a reducing agent and molecular oxygen, BgPI-EDTA x FeII but not BePI-EDTA x FeII induced a double-stranded cut in a plasmid DNA at the single site where a triplex-forming oligonucleotide binds. At single nucleotide resolution, it was found that upon triplex formation BePI-EDTA x FeII led to cleavage of the pyrimidine strand and protection of the purine strand. BgPI-EDTA x FeII cleaved both strands with similar efficiency. The difference in cleavage efficiency between the two conjugates was rationalized by the location of the EDTA x FeII moiety with respect to the grooves of DNA (major groove: BePI-EDTA x FeII, minor groove: BgPI-EDTA x FeII). This work paves the way to the development of a new class of triple helix directed DNA cleaving reagents. Such molecules will be of interest for sequence-specific DNA cleavage and for investigating triple-helical structures, such as H-DNA, which could play an important role in the control of gene expression in vivo.  相似文献   
160.
By checking the chemistry underlying the concept of “supramolecular cluster catalysis” we identified two major errors in our publications related to this topic, which are essentially due to contamination problems. (1) The conversion of the “closed” cluster cation [H3Ru3(C6H6)(C6Me6)2(O)]+ (1) into the “open” cluster cation [H2Ru3(C6H6)(C6Me6)2(O)(OH)]+ (2), which we had ascribed to a reaction with water in the presence of ethylbenzene is simply an oxidation reaction which occurs in the presence of air. (2) The higher catalytic activity observed with ethylbenzene, which we had erroneously attributed to the “open” cluster cation [H2Ru3(C6H6)(C6Me6)2(O)(OH)]+ (2), was due to the formation of RuO2 · nH2O, caused by a hydroperoxide contamination present in ethylbenzene.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号