首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   123548篇
  免费   9839篇
  国内免费   8296篇
化学   74246篇
晶体学   1491篇
力学   7607篇
综合类   603篇
数学   11991篇
物理学   45745篇
  2025年   182篇
  2024年   1477篇
  2023年   2719篇
  2022年   4114篇
  2021年   4860篇
  2020年   5398篇
  2019年   5212篇
  2018年   3682篇
  2017年   3425篇
  2016年   5402篇
  2015年   5156篇
  2014年   6269篇
  2013年   7953篇
  2012年   9602篇
  2011年   9903篇
  2010年   6574篇
  2009年   6236篇
  2008年   6639篇
  2007年   6042篇
  2006年   5517篇
  2005年   4646篇
  2004年   3482篇
  2003年   2695篇
  2002年   2454篇
  2001年   2025篇
  2000年   1796篇
  1999年   2110篇
  1998年   1878篇
  1997年   1745篇
  1996年   1894篇
  1995年   1531篇
  1994年   1496篇
  1993年   1207篇
  1992年   1085篇
  1991年   1019篇
  1990年   820篇
  1989年   607篇
  1988年   505篇
  1987年   405篇
  1986年   388篇
  1985年   328篇
  1984年   238篇
  1983年   154篇
  1982年   146篇
  1981年   111篇
  1980年   84篇
  1979年   49篇
  1978年   38篇
  1976年   39篇
  1974年   47篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
991.
    
Herein, we report a theoretical and experimental study of the water-gas shift (WGS) reaction on Ir1/FeOx single-atom catalysts. Water dissociates to OH* on the Ir1 single atom and H* on the first-neighbour O atom bonded with a Fe site. The adsorbed CO on Ir1 reacts with another adjacent O atom to produce CO2, yielding an oxygen vacancy (Ovac). Then, the formation of H2 becomes feasible due to migration of H from adsorbed OH* toward Ir1 and its subsequent reaction with another H*. The interaction of Ir1 and the second-neighbouring Fe species demonstrates a new WGS pathway featured by electron transfer at the active site from Fe3+−O⋅⋅⋅Ir2+−Ovac to Fe2+−Ovac⋅⋅⋅Ir3+−O with the involvement of Ovac. The redox mechanism for WGS reaction through a dual metal active site (DMAS) is different from the conventional associative mechanism with the formation of formate or carboxyl intermediates. The proposed new reaction mechanism is corroborated by the experimental results with Ir1/FeOx for sequential production of CO2 and H2.  相似文献   
992.
    
Decreasing the energy loss is one of the most feasible ways to improve the efficiencies of organic photovoltaic (OPV) cells. Recent studies have suggested that non-radiative energy loss ( ) is the dominant factor that hinders further improvements in state-of-the-art OPV cells. However, there is no rational molecular design strategy for OPV materials with suppressed . Herein, taking molecular surface electrostatic potential (ESP) as a quantitative parameter, we establish a general relationship between chemical structure and intermolecular interactions. The results reveal that increasing the ESP difference between donor and acceptor will enhance the intermolecular interaction. In the OPV cells, the enhanced intermolecular interaction will increase the charge-transfer (CT) state ratio in its hybridization with the local exciton state to facilitate charge generation, but simultaneously result in a larger . These results suggest that finely tuning the ESP of OPV materials is a feasible method to further improve the efficiencies of OPV cells.  相似文献   
993.
    
The synthesis of hierarchical nanosized zeolite materials without growth modifiers and mesoporogens remains a substantial challenge. Herein, we report a general synthetic approach to produce hierarchical nanosized single-crystal aluminophosphate molecular sieves by preparing highly homogeneous and concentrated precursors and heating at elevated temperatures. Accordingly, aluminophosphate zeotypes of LTA (8-rings), AEL (10-rings), AFI (12-rings), and -CLO (20-rings) topologies, ranging from small to extra-large pores, were synthesized. These materials show exceptional properties, including small crystallites (30–150 nm), good monodispersity, abundant mesopores, and excellent thermal stability. A time-dependent study revealed a non-classical crystallization pathway by particle attachment. This work opens a new avenue for the development of hierarchical nanosized zeolite materials and understanding their crystallization mechanism.  相似文献   
994.
    
The self-assembly of highly stable zirconium(IV)-based coordination cages with aggregation induced emission (AIE) molecular rotors for in vitro bio-imaging is reported. The two coordination cages, NUS-100 and NUS-101, are assembled from the highly stable trinuclear zirconium vertices and two flexible carboxyl-decorated tetraphenylethylene (TPE) spacers. Extensive experimental and theoretical results show that the emissive intensity of the coordination cages can be controlled by restricting the dynamics of AIE-active molecular rotors though multiple external stimuli. Because the two coordination cages have excellent chemical stability in aqueous solutions (pH stability: 2–10) and impressive AIE characteristics contributed by the molecular rotors, they can be employed as novel biological fluorescent probes for in vitro live-cell imaging.  相似文献   
995.
The enantioselective ketimine–ene reaction is one of the most challenging stereocontrolled reaction types in organic synthesis. In this work, catalytic enantioselective ketimine–ene reactions of 2-aryl-3H-indol-3-ones with α-methylstyrenes were achieved by utilizing a B(C6F5)3/chiral phosphoric acid (CPA) catalyst. These ketimine–ene reactions proceed well with low catalyst loading (B(C6F5)3/CPA=2 mol %/2 mol %) under mild conditions, providing rapid and facile access to a series of functionalized 2-allyl-indolin-3-ones with very good reactivity (up to 99 % yield) and excellent enantioselectivity (up to 99 % ee). Theoretical calculations reveal that enhancement of the acidity of the chiral phosphoric acid by B(C6F5)3 significantly reduces the activation free energy barrier. Furthermore, collective favorable hydrogen-bonding interactions, especially the enhanced N−H⋅⋅⋅O hydrogen-bonding interaction, differentiates the free energy of the transition states of CPA and B(C6F5)3/CPA, thereby inducing the improvement of stereoselectivity.  相似文献   
996.
    
Unveiling the active phase of catalytic materials under reaction conditions is important for the construction of efficient electrocatalysts for selective nitrate reduction to ammonia. The origin of the prominent activity enhancement for CuO (Faradaic efficiency: 95.8 %, Selectivity: 81.2 %) toward selective nitrate electroreduction to ammonia was probed. 15N isotope labeling experiments showed that ammonia originated from nitrate reduction. 1H NMR spectroscopy and colorimetric methods were performed to quantify ammonia. In situ Raman and ex situ experiments revealed that CuO was electrochemically converted into Cu/Cu2O, which serves as an active phase. The combined results of online differential electrochemical mass spectrometry (DEMS) and DFT calculations demonstrated that the electron transfer from Cu2O to Cu at the interface could facilitate the formation of *NOH intermediate and suppress the hydrogen evolution reaction, leading to high selectivity and Faradaic efficiency.  相似文献   
997.
Fully utilizing solar energy for catalysis requires the integration of conversion mechanisms and therefore delicate design of catalyst structures and active species. Herein, a MOF crystal engineering method was developed to controllably synthesize a copper–ceria catalyst with well-dispersed photoactive Cu-[O]-Ce species. Using the preferential oxidation of CO as a model reaction, the catalyst showed remarkably efficient and stable photoactivated catalysis, which found practical application in feed gas treatment for fuel cell gas supply. The coexistence of photochemistry and thermochemistry effects contributes to the high efficiency. Our results demonstrate a catalyst design approach with atomic or molecular precision and a combinatorial photoactivation strategy for solar energy conversion.  相似文献   
998.
    
As a kind of photoluminescent material, CuI complexes have many advantages such as adjustable emission, variable structures, and low cost, attracting attention in many fields. In this work, two novel two-coordinate CuI-N-heterocyclic carbene complexes were synthesized, and they exhibit unique dual emission properties, fluorescence and phosphorescence. The crystal structure, packing mode, and photophysical properties under different conditions were systematically studied, proving the emissive mechanism to be the locally excited state of the carbazole group. Based on this mechanism, ultralong room-temperature phosphorescence (RTP) with a lifetime of 140 ms is achieved by selective deuteration of the carbazole group. These results deepen the understanding of the luminescence mechanism and design strategy for two-coordinate CuI complexes, and prove their potential in applications as ultralong RTP materials.  相似文献   
999.
    
Ionic hydrogenation has not been extensively explored, but is advantageous for challenging substrates such as unsaturated intermediates. Reported here is an iridium-catalyzed hydrogenation of oxocarbenium ions to afford chiral isochromans with high enantioselectivities. A variety of functionalities are compatible with this catalytic system. In the presence of a catalytic amount of the Brønsted acid HCl, an α-chloroether is generated in situ and subsequentially reduced. Kinetic studies suggest first-order kinetics in the substrate and half-order kinetics in the catalyst. A positive nonlinear effect, together with the half kinetic order, revealed a dimerization of the catalyst. Possible reaction pathways based on the monomeric iridium catalyst were proposed and DFT computational studies revealed an ionic hydrogenation pathway. Chloride abstraction and the cleavage of dihydrogen occur in the same step.  相似文献   
1000.
    
Fiber-like π-conjugated nanostructures are important components of flexible organic electronic and optoelectronic devices. To broaden the range of potential applications, one needs to control not only the length of these nanostructures, but the introduction of diverse functionality with spatially selective control. Here we report the synthesis of a crystalline-coil block copolymer of oligo(p-phenylenevinylene)-b-poly(2-vinylpyridine) (OPV5-b-P2VP44), in which the basicity and coordinating/chelating ability of the P2VP segment provide a landscape for the incorporation of a variety of functional inorganic NPs. Through a self-seeding strategy, we were able to prepare monodisperse fiber-like micelles of OPV5-b-P2VP44 with lengths ranging from 50 to 800 nm. Significantly, the exposed two ends of OPV core of these fiber-like micelles remained active toward further epitaxial deposition of OPV5-b-PNIPAM49 and OPV5-b-P2VP44 to generate uniform A-B-A and B-A-B-A-B segmented block comicelles with tunable lengths for each block. The P2VP domains in these (co-)micelles can be selectively decorated with inorganic and polymeric nanoparticles as well as metal oxide coatings, to afford hybrid fiber-like nanostructures. This work provides a versatile strategy toward the fabrication of narrow length dispersity continuous and segmented π-conjugated OPV-containing fiber-like micelles with the capacity to be decorated in a spatially selective way with varying functionalities.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号