全文获取类型
收费全文 | 108172篇 |
免费 | 18547篇 |
国内免费 | 9971篇 |
专业分类
化学 | 72681篇 |
晶体学 | 1284篇 |
力学 | 7267篇 |
综合类 | 533篇 |
数学 | 12104篇 |
物理学 | 42821篇 |
出版年
2024年 | 919篇 |
2023年 | 2407篇 |
2022年 | 4043篇 |
2021年 | 4773篇 |
2020年 | 4976篇 |
2019年 | 4167篇 |
2018年 | 3561篇 |
2017年 | 3296篇 |
2016年 | 5186篇 |
2015年 | 4959篇 |
2014年 | 6050篇 |
2013年 | 7781篇 |
2012年 | 9425篇 |
2011年 | 9760篇 |
2010年 | 6442篇 |
2009年 | 6161篇 |
2008年 | 6534篇 |
2007年 | 6001篇 |
2006年 | 5480篇 |
2005年 | 4604篇 |
2004年 | 3441篇 |
2003年 | 2669篇 |
2002年 | 2412篇 |
2001年 | 1979篇 |
2000年 | 1762篇 |
1999年 | 2073篇 |
1998年 | 1852篇 |
1997年 | 1721篇 |
1996年 | 1892篇 |
1995年 | 1503篇 |
1994年 | 1461篇 |
1993年 | 1165篇 |
1992年 | 1069篇 |
1991年 | 985篇 |
1990年 | 798篇 |
1989年 | 572篇 |
1988年 | 479篇 |
1987年 | 397篇 |
1986年 | 389篇 |
1985年 | 332篇 |
1984年 | 249篇 |
1983年 | 159篇 |
1982年 | 149篇 |
1981年 | 112篇 |
1980年 | 77篇 |
1979年 | 44篇 |
1978年 | 35篇 |
1976年 | 37篇 |
1975年 | 33篇 |
1974年 | 45篇 |
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
241.
Zhejiang Ophiopogon japonicus (ZOJ) is a specific variety of Ophiopogon japonicus with characteristic steroidal saponins and homoisoflavonoids, which are also main pharmacodynamic constituents with clinical effects, including curing inflammation and cardiovascular diseases. However, few analysis methods were applied to simultaneously and quantitatively determine two kinds of its constituents, and hazardous organic solvents are mostly used for extraction. In this study, a new validated simultaneous extraction and determination method for four characteristic steroidal saponins and homoisoflavonoids in ZOJ was established by ionic liquid–ultrasonic extraction (IL-UAE) combined with HPLC-DAD-ELSD analysis, which can be used for the quality control of ZOJ. Chromatographic separation was performed with a DAD wavelength at 296 nm, and the ELSD parameters of the drift tube temperature (DTT), atomizer temperature (AT), and nitrogen gas pressure (NGP) were set at 20% heating power, 70 °C, and 25 psi, respectively. The optimal IL-UAE conditions were 1 mol/L [Bmim]CF3SO3 aqueous solution, a liquid–material ratio of 40 mL/g, and an ultrasonic time of 60 min. The proposed method is reliable, reproducible, and accurate, which were verified with real sample assays. Consequently, this work will be helpful for the quality control of ZOJ. It can also present a promising reference for the simultaneous extraction and determination of different kinds of constituents in other medicinal plants. 相似文献
242.
Dehe Wang Qichao Lu Zhanjun Li Chen Fang Ran Liu Bingchuan Yang Guodong Shen 《Molecules (Basel, Switzerland)》2022,27(21)
The efficient “One-pot” CuCl2-catalyzed C–S bond coupling reactions were developed for the synthesis of dibenzo[b,f][1,4]thiazepines and 11-methy-ldibenzo[b,f][1,4]thiazepines via 2-iodobenzaldehydes/2-iodoacetophenones with 2-aminobenzenethiols/2,2′-disulfanediyldianilines by using bifunctional-reagent N, N′-dimethylethane-1,2-diamine (DMEDA), which worked as ligand and reductant. The reactions were compatible with a range of substrates to give the corresponding products in moderate to excellent yields. 相似文献
243.
The present study was aimed at examining the anti-tumor effects and molecular mechanisms of 2′-fucosyllactose (2′-FL). At the beginning, the viabilities of four types of colon cancer cells were analyzed after exposure to increasing concentrations of 2′-FL, and HCT116 cells were selected as the sensitive ones, which were applied in the further experiments; then, interestingly, 2′-FL (102.35 µM) was found to induce apoptosis of HCT116 cells, which coincides with significant changes in VEGFA/VEGFR2/p-PI3K/p-Akt/cleaved Caspase3 proteins. Next, in a tumor-bearing nude mouse model, HCT116 was chosen as the sensitive cell line, and 5-fluorouracil (5-Fu) was chosen as the positive medicine. It was noteworthy that both 2′-FL group (2.41 ± 0.57 g) and 2′FL/5-Fu group (1.22 ± 0.35 g) had a significantly lower tumor weight compared with the control (3.87 ± 0.79 g), suggesting 2′-FL could inhibit colon cancer. Since 2′-FL reduced the number of new blood vessels and the malignancy of tumors, we confirmed that 2′-FL effectively inhibited HCT116 tumors, and its mechanism was achieved by regulating the VEGFA/VEGFR2/PI3K/Akt/Caspase3 pathway. Moreover, though HE staining and organ index measurement, 2′-FL was validated to alleviate toxic effects on liver and kidney tissue when combining with 5-Fu. In conclusion, 2′-FL had certain anti-tumor and detoxification effects. 相似文献
244.
Mantong Li Feng Jiang Liangyi Xue Cheng Peng Zhengzheng Shi Zheng Zhang Jia Li Yupeng Pan Xinya Wang Chunqiong Feng Dongfang Qiao Zhenzhong Chen Qizhi Luo Xuncai Chen 《Molecules (Basel, Switzerland)》2022,27(21)
Cancer is a leading cause of death worldwide, with an increasing mortality rate over the past years. The early detection of cancer contributes to early diagnosis and subsequent treatment. How to detect early cancer has become one of the hot research directions of cancer. Tumor biomarkers, biochemical parameters for reflecting cancer occurrence and progression have caused much attention in cancer early detection. Due to high sensitivity, convenience and low cost, biosensors have been largely developed to detect tumor biomarkers. This review describes the application of various biosensors in detecting tumor markers. Firstly, several typical tumor makers, such as neuron-specific enolase (NSE), carcinoembryonic antigen (CEA), prostate-specific antigen (PSA), squamous cell carcinoma antigen (SCCA), carbohydrate, antigen19-9 (CA19-9) and tumor suppressor p53 (TP53), which may be helpful for early cancer detection in the clinic, are briefly described. Then, various biosensors, mainly focusing on electrochemical biosensors, optical biosensors, photoelectrochemical biosensors, piezoelectric biosensors and aptamer sensors, are discussed. Specifically, the operation principles of biosensors, nanomaterials used in biosensors and the application of biosensors in tumor marker detection have been comprehensively reviewed and provided. Lastly, the challenges and prospects for developing effective biosensors for early cancer diagnosis are discussed. 相似文献
245.
Acute pancreatitis (AP) is a complex inflammatory disease caused by multiple etiologies, the pathogenesis of which has not been fully elucidated. Oxidative stress is important for the regulation of inflammation-related signaling pathways, the recruitment of inflammatory cells, the release of inflammatory factors, and other processes, and plays a key role in the occurrence and development of AP. In recent years, antioxidant therapy that suppresses oxidative stress by scavenging reactive oxygen species has become a research highlight of AP. However, traditional antioxidant drugs have problems such as poor drug stability and low delivery efficiency, which limit their clinical translation and applications. Nanomaterials bring a brand-new opportunity for the antioxidant treatment of AP. This review focuses on the multiple advantages of nanomaterials, including small size, good stability, high permeability, and long retention effect, which can be used not only as effective carriers of traditional antioxidant drugs but also directly as antioxidants. In this review, after first discussing the association between oxidative stress and AP, we focused on summarizing the literature related to antioxidant nanomaterials for the treatment of AP and highlighting the effects of these nanomaterials on the indicators related to oxidative stress in pathological states, aiming to provide references for follow-up research and promote clinical application. 相似文献
246.
Wanjun Ni Lizhong Wang Hongjian Song Yuxiu Liu Qingmin Wang 《Molecules (Basel, Switzerland)》2022,27(21)
Matrine derivatives were reported to have various biological activities, especially the ester, amide or sulfonamide derivatives of matrine deriving from the hydroxyl or carboxyl group at the end of the branch chain after the D ring of matrine is opened. In this work, to investigate whether moving away all functional groups from the C-11 branch chain could have an impact on the bioactivities, such as anti-tobacco mosaic virus (TMV), insecticidal and fungicidal activities, a variety of N-substituted-11-butyl matrine derivatives were synthesized. The obtained bioassay result showed that most N-substituted-11-butyl matrine derivatives had obviously enhanced anti-TMV activity compared with matrine, especially many compounds had good inhibitory activity close to that of commercialized virucide Ningnanmycin (inhibition rate 55.4, 57.8 ± 1.4, 55.3 ± 0.5 and 60.3 ± 1.2% at 500 μg/mL; 26.1, 29.7 ± 0.2, 24.2 ± 1.0 and 27.0 ± 0.3% at 100 μg/mL, for the in vitro activity, in vivo inactivation, curative and protection activities, respectively). Notably, N-benzoyl (7), N-benzyl (16), and N-cyclohexylmethyl-11-butyl (19) matrine derivatives had higher anti-TMV activity than Ningnanmycin at both 500 and 100 μg/mL for the four test modes, showing high potential as anti-TMV agent. Furthermore, some compounds also showed good fungicidal activity or insecticidal activity. 相似文献
247.
Yaqi Xu Qianwen Sun Wei Chen Yanqi Han Yue Gao Jun Ye Hongliang Wang Lili Gao Yuling Liu Yanfang Yang 《Molecules (Basel, Switzerland)》2022,27(21)
Taste masking of traditional Chinese medicines (TCMs) containing multiple bitter components remains an important challenge. In this study, berberine (BER) in alkaloids and phillyrin (PHI) in flavonoid glycosides, which are common bitter components in traditional Chinese medicines, were selected as model drugs. Chitosan (CS) was used to mask their unfriendly taste. Firstly, from the molecular level, we explained the taste-masking mechanism of CS on those two bitter components in detail. Based on those taste-masking mechanisms, the bitter taste of a mixture of BER and PHI was easily masked by CS in this work. The physicochemical characterization results showed the taste-masking compounds formed by CS with BER (named as BER/CS) and PHI (named as PHI/CS) were uneven in appearance. The drug binding efficiency of BER/CS and PHI/CS was 50.15 ± 2.63% and 67.10 ± 2.52%, respectively. The results of DSC, XRD, FTIR and molecular simulation further indicated that CS mainly masks the bitter taste by disturbing the binding site of bitter drugs and bitter receptors in the oral cavity via forming hydrogen bonds between its hydroxyl or amine groups and the nucleophilic groups of BER and PHI. The taste-masking evaluation results by the electronic tongue test confirmed the excellent taste-masking effects on alkaloids, flavonoid glycosides or a mixture of the two kinds of bitter components. The in vitro release as well as in vivo pharmacokinetic results suggested that the taste-masked compounds in this work could achieve rapid drug release in the gastric acid environment and did not influence the in vivo pharmacokinetic results of the drug. The taste-masking method in this work may have potential for the taste masking of traditional Chinese medicine compounds containing multiple bitter components. 相似文献
248.
249.
Le Zhai Ya Liu Yue Jiang Ling-Yan Kong Jian Xiao Yi-Xue Wang Yang Shi Yi-Lin Zhang Ke-Wu Yang 《Molecules (Basel, Switzerland)》2022,27(22)
Multidrug-resistant bacterial infections mediated by metallo-β-lactamases (MβLs) have grown into an emergent health threat, and development of novel antimicrobials is an ideal strategy to combat the infections. Herein, a novel vancomycin derivative Vb was constructed by conjugation of triazolylthioacetamide and vancomycin molecules, characterized by reverse-phase high performance liquid chromatography (HPLC) and confirmed by matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF MS). The biological assays revealed that Vb effectively inhibited S. aureus and methicillin-resistant S. aureus (MRSA), gradually increased the antimicrobial effect of β-lactam antibiotics (cefazolin, meropenem and penicillin G) and exhibited a dose-dependent synergistic antibacterial effect against eight resistant strains tested, which was confirmed by the time-kill curves determination. Most importantly, Vb increased the antimicrobial effect of meropenem against the clinical isolates EC08 and EC10 and E. coli producing ImiS and CcrA, resulting in a 4- and 8-fold reduction in MIC values, respectively, at a dose up to 32 μg/mL. This work offers a promising scaffold for the development of MβLs inhibitors, specifically antimicrobials for clinically drug-resistant isolates. 相似文献
250.
Qi Zhang Fengjiao Xu Pei Lu Di Zhu Lihui Yuwen Lianhui Wang 《Molecules (Basel, Switzerland)》2022,27(22)
Two-dimensional (2D) transition metal dichalcogenide nanosheets (TMDC NSs) have attracted growing interest due to their unique structure and properties. Although various methods have been developed to prepare TMDC NSs, there is still a great need for a novel strategy combining simplicity, generality, and high efficiency. In this study, we developed a novel polymer-assisted ball milling method for the efficient preparation of TMDC NSs with small sizes. The use of polymers can enhance the interaction of milling balls and TMDC materials, facilitate the exfoliation process, and prevent the exfoliated nanosheets from aggregating. The WSe2 NSs prepared by carboxymethyl cellulose sodium (CMC)-assisted ball milling have small lateral sizes (8~40 nm) with a high yield (~60%). The influence of the experimental conditions (polymer, milling time, and rotation speed) on the size and yield of the nanosheets was studied. Moreover, the present approach is also effective in producing other TMDC NSs, such as MoS2, WS2, and MoSe2. This study demonstrates that polymer-assisted ball milling is a simple, general, and effective method for the preparation of small-sized TMDC NSs. 相似文献